scholarly journals The Layer 7 Cortical Interface: A Scalable and Minimally Invasive Brain-Computer Interface Platform

2022 ◽  
Author(s):  
Elton Ho ◽  
Mark Hettick ◽  
Demetrios Papageorgiou ◽  
Adam J Poole ◽  
Manuel Monge ◽  
...  

Progress toward the development of brain-computer interfaces has signaled the potential to restore, replace, or augment lost or impaired neurological function in a variety of disease states. Existing brain-computer interfaces rely on invasive surgical procedures or brain-penetrating electrodes, which limit addressable applications of the technology and the number of eligible patients. Here we describe a novel approach to constructing a neural interface, comprising conformable thin-film electrode arrays and a minimally invasive surgical delivery system that together facilitate communication with large portions of the cortical surface in bidirectional fashion (enabling both recording and stimulation). We demonstrate the safety and feasibility of rapidly delivering reversible implants containing over 2,000 microelectrodes to multiple functional regions in both hemispheres of the Gottingen minipig brain simultaneously, without requiring a craniotomy, at an effective insertion rate faster than 40 ms per channel, without damaging the cortical surface. We further demonstrate the performance of this system for high-density neural recording, focal cortical stimulation, and accurate neural decoding. Such a system promises to accelerate efforts to better decode and encode neural signals, and to expand the patient population that could benefit from neural interface technology.

Author(s):  
Katie Crowley ◽  
Ian Pitt

This chapter discusses the use of commercial Brain Computer Interfaces to monitor the emotions and interactions of a subject as they use a system. Tracking how a user interacts with a system, and the emotion-based responses that are invoked as they interact with the system, yield very valuable datasets for the development of intelligent, adaptive systems. The proliferation of mobile devices as an emerging platform offers scope for the development of the relationship between Brain Computer Interfaces and mobile technology, towards ubiquitous, minimally invasive, mobile systems.


BDJ ◽  
2019 ◽  
Vol 226 (10) ◽  
pp. 789-793 ◽  
Author(s):  
Thomas Dietrich ◽  
Ralf Krug ◽  
Gabriel Krastl ◽  
Phillip L. Tomson

Abstract Surgical extrusion is a recognised treatment option for teeth that have insufficient coronal tooth structure remaining due to deep caries, resorption or traumatic injury. However, the technique has not been widely adopted, arguably because extraction of a severely compromised tooth may be difficult to achieve in a gentle and predictable way. In this paper, we present our novel approach to surgical extrusion and subsequent management of teeth using a vertical extraction system (Benex), which has become the method of choice in the authors' practice for many teeth that would otherwise be deemed unrestorable. We describe the clinical procedure in detail and discuss the advantages and disadvantages compared to alternative approaches, including surgical crown lengthening and orthodontic extrusion.


Author(s):  
Kevin Woeppel ◽  
Christopher Hughes ◽  
Angelica J. Herrera ◽  
James R. Eles ◽  
Elizabeth C. Tyler-Kabara ◽  
...  

Brain-computer interfaces are being developed to restore movement for people living with paralysis due to injury or disease. Although the therapeutic potential is great, long-term stability of the interface is critical for widespread clinical implementation. While many factors can affect recording and stimulation performance including electrode material stability and host tissue reaction, these factors have not been investigated in human implants. In this clinical study, we sought to characterize the material integrity and biological tissue encapsulation via explant analysis in an effort to identify factors that influence electrophysiological performance. We examined a total of six Utah arrays explanted from two human participants involved in intracortical BCI studies. Two platinum (Pt) arrays were implanted for 980 days in one participant (P1) and two Pt and two iridium oxide (IrOx) arrays were implanted for 182 days in the second participant (P2). We observed that the recording quality followed a similar trend in all six arrays with an initial increase in peak-to-peak voltage during the first 30–40 days and gradual decline thereafter in P1. Using optical and two-photon microscopy we observed a higher degree of tissue encapsulation on both arrays implanted for longer durations in participant P1. We then used scanning electron microscopy and energy dispersive X-ray spectroscopy to assess material degradation. All measures of material degradation for the Pt arrays were found to be more prominent in the participant with a longer implantation time. Two IrOx arrays were subjected to brief survey stimulations, and one of these arrays showed loss of iridium from most of the stimulated sites. Recording performance appeared to be unaffected by this loss of iridium, suggesting that the adhesion of IrOx coating may have been compromised by the stimulation, but the metal layer did not detach until or after array removal. In summary, both tissue encapsulation and material degradation were more pronounced in the arrays that were implanted for a longer duration. Additionally, these arrays also had lower signal amplitude and impedance. New biomaterial strategies that minimize fibrotic encapsulation and enhance material stability should be developed to achieve high quality recording and stimulation for longer implantation periods.


2021 ◽  
Author(s):  
Kevin Woeppel ◽  
Christopher Hughes ◽  
Angelica J. Herrera ◽  
James Eles ◽  
Elizabeth C. Tyler-Kabara ◽  
...  

AbstractBrain-computer interfaces are being developed to restore movement for people living with paralysis due to injury or disease. Although the therapeutic potential is great, long-term stability of the interface is critical for widespread clinical implementation. While many factors can affect recording and stimulation performance including electrode material stability and host tissue reaction, these factors have not been investigated in human implants. In this clinical study, we sought to characterize the material integrity and biological tissue encapsulation via explant analysis in an effort to identify factors that influence electrophysiological performance.We examined a total of six Utah arrays explanted from two human participants involved in intracortical BCI studies. Two Pt arrays were implanted for 980 days in one participant (P1) and two Pt and two iridium oxide (IrOx) arrays were implanted for 182 days in the second participant (P2). We observed that the recording quality followed a similar trend in all 6 arrays with an initial increase in peak-to-peak voltage during the first 30-40 days and gradual decline thereafter in P1.Using optical and two-photon microscopy (TPM) we observed a higher degree of tissue encapsulation on both arrays implanted for longer durations in participant P1. We then used scanning electron microscopy and energy dispersive X-ray spectroscopy to assess material degradation. All measures of material degradation for the Pt arrays were found to be more prominent in the participant with a longer implantation time. Two IrOx arrays were subjected to brief survey stimulations, and one of these arrays showed loss of iridium from majority of the stimulated sites. Recording performance appeared to be unaffected by this loss of iridium, suggesting that the adhesion of IrOx coating may have been compromised by the stimulation, but the metal layer did not detach until or after array removal.In summary, both tissue encapsulation and material degradation were more pronounced in the arrays that were implanted for a longer duration. Additionally, these arrays also had lower signal amplitude and impedance. New biomaterial strategies that minimize fibrotic encapsulation and enhance material stability should be developed to achieve high quality recording and stimulation for longer implantation periods.


2021 ◽  
Author(s):  
Thomas Stephens ◽  
Jon Cafaro ◽  
Ryan MacRae ◽  
Stephen B Simons

Chronically implanted brain-computer interfaces (BCIs) provide amazing opportunities to those living with disability and for the treatment of chronic disorders of the nervous system. However, this potential has yet to be fully realized in part due to the lack of stability in measured signals over time. Signal disruption stems from multiple sources including mechanical failure of the interface, changes in neuron health, and glial encapsulation of the electrodes that alter the impedance. In this study we present an algorithmic solution to the problem of long-term signal disruption in chronically implanted neural interfaces. Our approach utilizes a generative adversarial network (GAN), based on the original Unsupervised Image to Image Translation (UNIT) algorithm, which learns how to recover degraded signals back to their analogous non-disrupted (clean) exemplars measured at the time of implant. We demonstrate that this approach can reliably recover simulated signals in two types of commonly used neural interfaces: multi-electrode arrays (MEA), and electrocorticography (ECoG). To test the accuracy of signal recovery we employ a common BCI paradigm wherein a classification algorithm (neural decoder) is trained on the starting (non-disrupted) set of signals. Performance of the decoder demonstrates expected failure over time as the signal disruption accumulates. In simulated MEA experiments, our approach recovers decoder accuracy to >90% when as many as 13/ 32 channels are lost, or as many as 28/32 channels have their neural responses altered. In simulated ECoG experiments, our approach shows stabilization of the neural decoder indefinitely with decoder accuracies >95% over simulated lifetimes of over 1 year. Our results suggest that these types of neural networks can provide a useful tool to improve the long-term utility of chronically implanted neural interfaces.


2010 ◽  
Vol 17 (4) ◽  
pp. 292-294 ◽  
Author(s):  
Ennio Mazzera ◽  
Gianluca Brancaccio ◽  
Cristiana Feltri ◽  
Guido Michielon ◽  
Roberto Di Donato

2016 ◽  
Vol 1 (13) ◽  
pp. 169-176
Author(s):  
Lisa M. Evangelista ◽  
James L. Coyle

Esophageal cancer is the sixth leading cause of death from cancer worldwide. Esophageal resection is the mainstay treatment for cancers of the esophagus. While curative, surgical resection may result in swallowing difficulties that require intervention from speech-language pathologists (SLPs). Minimally invasive surgical procedures for esophageal resection have aimed to reduce morbidity and mortality associated with more invasive techniques. Both intra-operative and post-operative complications, regardless of the surgical approach, can result in dysphagia. This article will review the epidemiological impact of esophageal cancers, operative complications resulting in dysphagia, and clinical assessment and management of dysphagia pertinent to esophageal resection.


Sign in / Sign up

Export Citation Format

Share Document