weak wave
Recently Published Documents





2021 ◽  
pp. 28-39
Stanislav N. Girin Girin

. The comparative analysis of the regulatory framework of the rules of the Russian river register (PRR) and the Russian maritime register of shipping (PMR) on the design and strength of ships on underwater wings (SEC) showed a significant difference between the methodologies of these rules. In this regard, a comparative analysis of the rules is possible only by performing numerical calculations for specific vessels. This paper presents the results of calculations for three SEC models. It is shown that with some extrapolation of the dependences given in the PRR, the values ​​of the calculated values ​​of bending moments for SEC, intended for operation on the excitement of h3%> 2.0 m, can be obtained from the PMR. For more weak wave modes Settlements. The existing approach to the pro-willer of the strength of the SEC wing devices should be recognized obsolete. It is necessary to either upgrade the PRR, taking into account modern advances in the field of hydrodynami, or allow the use of modern software complexes for computers based on numerical methods for solving hydrodynamic problems.

2019 ◽  
Vol 76 (11) ◽  
pp. 3553-3567 ◽  
Aaron Match ◽  
Stephan Fueglistaler

Abstract The quasi-biennial oscillation (QBO) is a descending pattern of winds in the stratosphere that vanishes near the top of the tropical tropopause layer, even though the vertically propagating waves that drive the QBO are thought to originate in the troposphere several kilometers below. The region where there is low QBO power despite sufficient vertically propagating wave activity to drive a QBO is known as the buffer zone. Classical one-dimensional models of the QBO are ill suited to represent buffer zone dynamics because they enforce the attenuation of the QBO via a zero-wind lower boundary condition. The formation of the buffer zone is investigated by analyzing momentum budgets in the reanalyses MERRA-2 and ERA-Interim. The buffer zone must be formed by weak wave-driven acceleration and/or cancellation of the wave-driven acceleration. This paper shows that in MERRA-2 weak wave-driven acceleration is insufficient to form the buffer zone, so cancellation of the wave-driven acceleration must play a role. The cancellation results from damping of angular momentum anomalies, primarily due to horizontal mean and horizontal eddy momentum flux divergence, with secondary contributions from the Coriolis torque and vertical mean momentum flux divergence. The importance of the damping terms highlights the role of the buffer zone as the mediator of angular momentum exchange between the QBO domain and the far field. Some far-field angular momentum anomalies reach the solid Earth, leading to the well-documented lagged correlation between the QBO and the length of day.

2017 ◽  
Vol 2 (9) ◽  
Roumaissa Hassaini ◽  
Nicolas Mordant

2017 ◽  
Vol 95 (2) ◽  
A. Salhi ◽  
F. S. Baklouti ◽  
F. Godeferd ◽  
T. Lehner ◽  
C. Cambon

2009 ◽  
Vol 78 (8) ◽  
pp. 084403 ◽  
Yeontaek Choi ◽  
Sang Gyu Jo ◽  
Ho Il Kim ◽  
Sergey V. Nazarenko

Sign in / Sign up

Export Citation Format

Share Document