thymic atrophy
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 17)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Palmira Barreira-Silva ◽  
Rita Melo-Miranda ◽  
Claudia Nobrega ◽  
Susana Roque ◽  
Cláudia Serre-Miranda ◽  
...  

Disseminated infection with the high virulence strain of Mycobacterium avium 25291 leads to progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators act is not understood. We hypothesized that IFNγ and NO promote thymic atrophy through their effects on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that M. avium infection cause a reduction in the percentage and number of common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired ability to reconstitute thymi of RAGKO mice, in part due to IFNγ. Thymi from infected mice present an IFNγ and NO-driven inflammation. When transplanted under the kidney capsule of uninfected mice, thymi from infected mice are unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of defects mediated by IFNγ and NO, including alterations in the BM T cell precursors, the thymic structure and the thymocyte differentiation.


Virology ◽  
2021 ◽  
Author(s):  
Thomas Démoulins ◽  
Marie-Laurence Baron ◽  
Dominique Gauchat ◽  
Nadia Kettaf ◽  
Steven James Reed ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingli Luo ◽  
Lingxin Xu ◽  
Zhengyu Qian ◽  
Xi Sun

The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Hae-Yun Cho ◽  
Yun Gyeong Yang ◽  
Youkyoung Jeon ◽  
Chae-Kwan Lee ◽  
InHak Choi ◽  
...  

AbstractThymic atrophy in sepsis is a critical disadvantage because it induces immunosuppression and increases the mortality rate as the disease progresses. However, the exact mechanism of thymic atrophy has not been fully elucidated. In this study, we discovered a novel role for VSIG4-positive peritoneal macrophages (V4(+) cells) as the principal cells that induce thymic atrophy and thymocyte apoptosis. In CLP-induced mice, V4(+) cells were activated after ingestion of invading microbes, and the majority of these cells migrated into the thymus. Furthermore, these cells underwent a phenotypic shift from V4(+) to V4(−) and from MHC II(low) to MHC II(+). In coculture with thymocytes, V4(+) cells mainly induced apoptosis in DP thymocytes via the secretion of TNF-α. However, there was little effect on CD4 or CD8 SP and DN thymocytes. V4(−) cells showed low levels of activity compared to V4(+) cells. Thymic atrophy in CLP-induced V4(KO) mice was much less severe than that in CLP-induced wild-type mice. In addition, V4(KO) peritoneal macrophages also showed similar activity to V4(−) cells. Taken together, the current study demonstrates that V4(+) cells play important roles in inducing immunosuppression via thymic atrophy in the context of severe infection. These data also suggest that controlling the function of V4(+) cells may play a crucial role in the development of new therapies to prevent thymocyte apoptosis in sepsis.


Immunology ◽  
2021 ◽  
Author(s):  
Rachel Thomas ◽  
Jiyoung Oh ◽  
Weikan Wang ◽  
Dong‐Ming Su
Keyword(s):  

2021 ◽  
Author(s):  
Palmira Barreira-Silva ◽  
Rita Melo-Miranda ◽  
Claudia Nobrega ◽  
Susana Roque ◽  
Cláudia Serre-Miranda ◽  
...  

ABSTRACTDisseminated infection with the high virulence strain of Mycobacterium avium 25291 lead to progressive thymic atrophy. We previously uncovered that M. avium-induced thymic atrophy is due to increased levels of glucocorticoids synergizing with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators are playing, was yet to be understood. We hypothesized that IFNγ and NO might be affecting bone marrow (BM) T cell precursors and/or T cell differentiation in the thymus. We show that M. avium infection causes a reduction on the percentage of lymphoid-primed multipotent progenitors (LMPP) and common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice are unable to reconstitute thymi of RAGKO mice in an IFNγ-dependent way. Thymi from infected mice presents a NO-dependent inflammation. When transplanted under the kidney capsule of non-infected mice, thymic stroma from infected mice is unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS, and a decrease on activated caspase-3 positive thymocytes, that was not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of impairments, mediated by IFNγ and NO, affecting different steps of T cell differentiation from T cell precursor cells in the BM to the thymic stroma and thymocytes.


2020 ◽  
Vol 44 (6) ◽  
pp. 865-869
Author(s):  
Masaya Kawaguchi ◽  
Hiroki Kato ◽  
Yo Kaneko ◽  
Masayuki Matsuo

Thymus ◽  
2020 ◽  
Author(s):  
Rachel Thomas ◽  
Dong-Ming Su
Keyword(s):  

2020 ◽  
Vol 17 (1) ◽  
pp. 28-55
Author(s):  
Stephanie M. Lewkiewicz ◽  
◽  
Yao-Li Chuang ◽  
Tom Chou ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document