For getting clear images and overcoming shaking caused by various disturbances, real-time compensation of pointing errors will improve the overall stability performance of photoelectric detection by unmanned aerial vehicle. However, the compensation will be greatly deteriorated by error-causing sources, and the error correction process is of great importance. In this research, the problem of stability precision error correction is comprehensively studied. First, by modeling overall kinematics, error-causing sources, and error compensation, the error correction process is mathematically modeled and simulated. Then, by using simulation data regression, error correction models including the global function model and parametric model are established. The models are validated by carrying out both simulations and validation experiments. At last, the performances of the error correction models are compared and analyzed, which concerns the factors of parameter identification, model simplicity, and final improvement effect. Results show that the final stability precision can be greatly improved over 20%, and the parametric model outperforms the global function model comprehensively. It can be concluded that, either in simulation environment or real application scenarios, the obtained models and related analysis results are effective in improving the system stability performance.