promoter engineering
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Qingshu Liu ◽  
Liang Zhang ◽  
Yunsheng Wang ◽  
Cuiyang Zhang ◽  
Tianbo Liu ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 504
Author(s):  
Xiaofan Feng ◽  
Mario Andrea Marchisio

Synthetic gene circuits are made of DNA sequences, referred to as transcription units, that communicate by exchanging proteins or RNA molecules. Proteins are, mostly, transcription factors that bind promoter sequences to modulate the expression of other molecules. Promoters are, therefore, key components in genetic circuits. In this review, we focus our attention on the construction of artificial promoters for the yeast S. cerevisiae, a popular chassis for gene circuits. We describe the initial techniques and achievements in promoter engineering that predated the start of the Synthetic Biology epoch of about 20 years. We present the main applications of synthetic promoters built via different methods and discuss the latest innovations in the wet-lab engineering of novel promoter sequences.


2021 ◽  
Author(s):  
Yu Zhao ◽  
Shiqi Liu ◽  
Zhihui Lu ◽  
Baixiang Zhao ◽  
Shuhui Wang ◽  
...  

Abstract Background: In biological cells, promoters drive gene expression by specific binding of RNA polymerase. They determine the starting position, timing and level of gene expression. Therefore, rational fine-tuning of promoters to regulate the expression levels of target genes for optimizing biosynthetic pathways in metabolic engineering has recently become an active area of research. Results: In this study, we systematically detected and characterized the common promoter elements in the unconventional yeast Yarrowia lipolytica, and constructed an artificial hybrid promoter library that covers a wide range of promoter strength. We also report for the first time that upstream activation sequences (UAS) of Saccharomyces cerevisiae promoters can be functionally transferred to Y. lipolytica. Subsequently, using the production of a versatile platform chemical isoamyl alcohol as a test study, the hybrid promoter library was applied to optimize the biosynthesis pathway expression in Y. lipolytica. By expressing the key pathway gene, ScARO10, with the promoter library, 1.1-30.3 folds increase in the isoamyl alcohol titer over that of the control strain Y. lipolytica Po1g KU70∆ was achieved. Interestingly, the highest titer increase was attained with a weak promoter PUAS1B4-EXPm to express ScARO10. These results suggest that our hybrid promoter library can be a powerful toolkit for identifying optimum promoters for expressing metabolic pathways in Y. lipolytica.Conclusion: We envision that this promoter engineering strategy and the rationally engineered promoters constructed in this study could also be extended to other non-model fungi for strain improvement.


2021 ◽  
Author(s):  
Yu Zhao ◽  
Shiqi Liu ◽  
Zhihui Lu ◽  
Baixiang Zhao ◽  
Shuhui Wang ◽  
...  

Abstract Background In biological cells, promoters drive gene expression by binding to RNA polymerase specifically. They determine the starting position, timing and level of gene expression. Therefore, rational fine-tuning of promoters to regulate the expression levels of target genes for metabolic engineering applications to optimize biosynthetic pathways has recently become an active area of research. Results In this study, we systematically detected and characterized the common promoter elements in the unconventional yeast Yarrowia lipolytica, and constructed an artificial hybrid promoter library that covers a wide range of promoter strength. We also report for the first time that upstream activation sequences (UAS) of Saccharomyces cerevisiae promoters can be functionally transferred to Y. lipolytica. Subsequently, using the production of a versatile platform chemical isoamyl alcohol as a test study, the hybrid promoter library was applied to optimize the biosynthesis pathway expression in Y. lipolytica. Under the control of PUAS1B8−LEUm, the strongest promoter we constructed, overexpression of a key pathway gene led to 7.7-fold increase in the titer of isoamyl alcohol. Interestingly, a much weaker promoter PUAS1B4−EXPm increase the isoamyl alcohol titer by 30.3-fold. These results suggest that our hybrid promoter library can be a powerful toolkit for identifying optimum promoters for expressing metabolic pathways in Y. lipolytica. Conclusion We envision that this promoter engineering strategy and the rationally engineered promoters constructed in this study could also be extended to other non-model fungi for strain improvement.


2021 ◽  
Vol 10 (4) ◽  
pp. 847-856
Author(s):  
Alexander Einhaus ◽  
Thomas Baier ◽  
Marian Rosenstengel ◽  
Robert A. Freudenberg ◽  
Olaf Kruse
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document