phosphorus distribution
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 21)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 60 ◽  
pp. 102482
Author(s):  
Yifan Xing ◽  
Liang Guo ◽  
Yu Wang ◽  
Yangguo Zhao ◽  
Chunji Jin ◽  
...  

2021 ◽  
Author(s):  
Abdolkarim Danaei

Bauxite residue, also known as red mud, is generated during alumina production and is an abundant industrial waste material. Continuously increasing environmental concerns, together with scarcity of traditional mineral resources, have created a thrust to re-use the material. Red mud contains significant amounts of iron oxide and sodium hydroxide, hence a highly basic (pH > 10) slurry. In this research, the use of red mud as starting material for preparation of iron refining fluxes was evaluated. Red mud based fluxes and hot metal were equilibrated in graphite crucibles at the temperature range of 1300 ºC to 1400 °C and oxygen partial pressures range of 10-2 atm to 10-6 atm. It was found that the sulphide capacity increases with lime addition to a maximum 32 wt% CaO and decreases with increasing A12O3, TiO2 and SiO2 content in the fluxes saturated with lime. An iron foil equilibrium technique was employed to obtain precise measurements of phosphorus distribution between carbon saturated iron and red mud based fluxes. The measurements indicate that the equilibrium phosphorus distribution ratio initially increases with rise in FeO or CaO concentration of the fluxes and then drops. The melting behavior of the fluxes was also studied by visualizing the deformation of flux pellets as they were heated using a high temperature microscopy technique. Measurements of characteristic temperature for different fluxes indicated the melting property is a function of slag basicity. Therefore, optical basicity was used to establish a correlation between basicity of the red mud based fluxes and their melting properties.


2021 ◽  
Author(s):  
Abdolkarim Danaei

Bauxite residue, also known as red mud, is generated during alumina production and is an abundant industrial waste material. Continuously increasing environmental concerns, together with scarcity of traditional mineral resources, have created a thrust to re-use the material. Red mud contains significant amounts of iron oxide and sodium hydroxide, hence a highly basic (pH > 10) slurry. In this research, the use of red mud as starting material for preparation of iron refining fluxes was evaluated. Red mud based fluxes and hot metal were equilibrated in graphite crucibles at the temperature range of 1300 ºC to 1400 °C and oxygen partial pressures range of 10-2 atm to 10-6 atm. It was found that the sulphide capacity increases with lime addition to a maximum 32 wt% CaO and decreases with increasing A12O3, TiO2 and SiO2 content in the fluxes saturated with lime. An iron foil equilibrium technique was employed to obtain precise measurements of phosphorus distribution between carbon saturated iron and red mud based fluxes. The measurements indicate that the equilibrium phosphorus distribution ratio initially increases with rise in FeO or CaO concentration of the fluxes and then drops. The melting behavior of the fluxes was also studied by visualizing the deformation of flux pellets as they were heated using a high temperature microscopy technique. Measurements of characteristic temperature for different fluxes indicated the melting property is a function of slag basicity. Therefore, optical basicity was used to establish a correlation between basicity of the red mud based fluxes and their melting properties.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Haimeng Xue ◽  
Jie Li ◽  
Yunjin Xia ◽  
Yong Wan ◽  
Liangjun Chen ◽  
...  

In order to better understand and develop the technology of integrating dephosphorization and decarburization in a single converter (abbreviated as IDDSC), the relevant thermodynamic issues were discussed by calculation. Based on the thermodynamic calculation, the bridges between the phosphorus distribution ratio, temperature, and slag composition were constructed. Besides, the connections between the dephosphorization behavior and the microstructure of slag were also established by investigating four heats of hot metal smelt using IDDSC technology. As a result, the mechanism of phosphorus enrichment in the dephosphorization slag was revealed. Also, the results show that the dephosphorization efficiency increases gradually with increasing slag basicity. While the dephosphorization efficiency increases first and then decreases with the increase of FeO content in slag. There is a competition relationship between P2O5 and FeO in reacting with CaO and SiO2. When CaO/FeO is relatively high, not enough FeO is provided. Thus P2O5 is in priority to react with CaO and SiO2 through [3n + 2](CaO) + 2SiO2 + n(P2O5) = n(3CaO·P2O5)-2CaO·SiO2(s), generating P2O5-rich nC2S-C3P solid solution which promotes the removal of [P] from the hot metal. When CaO/FeO is relatively low, FeO competes over P2O5 in reacting with CaO and SiO2 through a(CaO) + b(SiO2) + c(FeO) = aCaO·bSiO2·cFeO(s), generating CaFeSiO4 instead of P2O5-rich solid solution. As a consequence, the slag with low CaO/FeO shows a poor dephosphorization ability.


2021 ◽  
Vol 205 ◽  
pp. 104760
Author(s):  
Yaqi Zhang ◽  
Ram C. Dalal ◽  
Ranjan Bhattacharyya ◽  
Gregor Meyer ◽  
Peng Wang ◽  
...  

age ◽  
2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Kabindra Adhikari ◽  
Indi S. Braden ◽  
Phillip Ray Owens ◽  
Amanda J. Ashworth ◽  
Charles West

2020 ◽  
Vol 34 (9) ◽  
Author(s):  
Fuminori Hashihama ◽  
Hiroaki Saito ◽  
Takuhei Shiozaki ◽  
Makoto Ehama ◽  
Shuhei Suwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document