al speciation
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Zaher Slim ◽  
Erik Menke

The corrosivity of chloride-based electrolytes is a major shortcoming in the practical realization of rechargeable aluminum batteries. Herein, the effect of Cl- on Al speciation and electrochemistry in tetrahydrofuran was measured by employing theoretical and experimental approaches for three systems: Al(OTF)3/THF, Al(OTF)3 plus LiCl in THF, and AlCl3/THF. The high consistency between measured and computed spectroscopic aspects associated with Al(OTF)3/THF electrolyte provided both a rationale for understanding Al complex-ion formation in a Cl- free environment and an approach for examining the effect of Cl- on Al speciation. Room-temperature Al plating was achieved from dilute solutions ([Al] = 0.1M) at potentials ≥ 0V (vs. Al⁄Al3+). Cl- is found to enable facile Al plating and SEM reveals that Al is electrochemically deposited as nanocrystalline grains.


2021 ◽  
Author(s):  
Zaher Slim ◽  
Erik Menke

The corrosivity of chloride-based electrolytes is a major shortcoming in the practical realization of rechargeable aluminum batteries. Herein, the effect of Cl- on Al speciation and electrochemistry in tetrahydrofuran was measured by employing theoretical and experimental approaches for three systems: Al(OTF)3/THF, Al(OTF)3 plus LiCl in THF, and AlCl3/THF. The high consistency between measured and computed spectroscopic aspects associated with Al(OTF)3/THF electrolyte provided both a rationale for understanding Al complex-ion formation in a Cl- free environment and an approach for examining the effect of Cl- on Al speciation. Room-temperature Al plating was achieved from dilute solutions ([Al] = 0.1M) at potentials ≥ 0V (vs. Al⁄Al3+). Cl- is found to enable facile Al plating and SEM reveals that Al is electrochemically deposited as nanocrystalline grains.


2020 ◽  
Vol 27 (1) ◽  
pp. 100-109
Author(s):  
Zhigen Li ◽  
Peng Wang ◽  
Neal W. Menzies ◽  
Brigid A. McKenna ◽  
Chithra Karunakaran ◽  
...  

Aluminium (Al) K- and L-edge X-ray absorption near-edge structure (XANES) has been used to examine Al speciation in minerals but it remains unclear whether it is suitable for in situ analyses of Al speciation within plants. The XANES analyses for nine standard compounds and root tissues from soybean (Glycine max), buckwheat (Fagopyrum tataricum), and Arabidopsis (Arabidopsis thaliana) were conducted in situ. It was found that K-edge XANES is suitable for differentiating between tetrahedral coordination (peak of 1566 eV) and octahedral coordination (peak of 1568 to 1571 eV) Al, but not suitable for separating Al binding to some of the common physiologically relevant compounds in plant tissues. The Al L-edge XANES, which is more sensitive to changes in the chemical environment, was then examined. However, the poorer detection limit for analyses prevented differentiation of the Al forms in the plant tissues because of their comparatively low Al concentration. Where forms of Al differ markedly, K-edge analyses are likely to be of value for the examination of Al speciation in plant tissues. However, the apparent inability of Al K-edge XANES to differentiate between some of the physiologically relevant forms of Al may potentially limit its application within plant tissues, as does the poorer sensitivity at the L-edge.


2019 ◽  
Vol 687 ◽  
pp. 1147-1163
Author(s):  
Magne Simonsen ◽  
Hans-Christian Teien ◽  
Ole Christian Lind ◽  
Øyvind Saetra ◽  
Jon Albretsen ◽  
...  
Keyword(s):  

2016 ◽  
Vol 99 (12) ◽  
pp. 3941-3947 ◽  
Author(s):  
Jinxing Gao ◽  
Guanghua Wen ◽  
Ting Huang ◽  
Binwen Bai ◽  
Ping Tang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document