shared representations
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
pp. 1-14
Author(s):  
Khoi D. Vo ◽  
Audrey Siqi-Liu ◽  
Alondra Chaire ◽  
Sophia Li ◽  
Elise Demeter ◽  
...  

Abstract Attention and working memory (WM) have classically been considered as two separate cognitive functions, but more recent theories have conceptualized them as operating on shared representations and being distinguished primarily by whether attention is directed internally (WM) or externally (attention, traditionally defined). Supporting this idea, a recent behavioral study documented a “WM Stroop effect,” showing that maintaining a color word in WM impacts perceptual color-naming performance to the same degree as presenting the color word externally in the classic Stroop task. Here, we employed ERPs to examine the neural processes underlying this WM Stroop task compared to those in the classic Stroop and in a WM-control task. Based on the assumption that holding a color word in WM would (pre-)activate the same color representation as by externally presenting that color word, we hypothesized that the neural cascade of conflict–control processes would occur more rapidly in the WM Stroop than in the classic Stroop task. Our behavioral results replicated equivalent interference behavioral effects for the WM and classic Stroop tasks. Importantly, however, the ERP signatures of conflict detection and resolution displayed substantially shorter latencies in the WM Stroop task. Moreover, delay-period conflict in the WM Stroop task, but not in the WM control task, impacted the ERP and performance measures for the WM probe stimuli. Together, these findings provide new insights into how the brain processes conflict between internal representations and external stimuli, and they support the view of shared representations between internally held WM content and attentional processing of external stimuli.


2021 ◽  
pp. 239-249
Author(s):  
Arnaud Boutillon ◽  
Pierre-Henri Conze ◽  
Christelle Pons ◽  
Valérie Burdin ◽  
Bhushan Borotikar

2020 ◽  
Author(s):  
Sebastian Musslick ◽  
Andrew Saxe ◽  
Abigail Novick Hoskin ◽  
Daniel Reichman ◽  
Jonathan D. Cohen

One of the most fundamental and striking limitations of human cognition appears to be a constraint in the number of control-dependent processes that can be executed at one time. This constraint motivates one of the most influential tenets of cognitive psychology: that cognitive control relies on a central, limited capacity processing mechanism that imposes a seriality constraint on processing. Here we provide a formally explicit challenge to this view. We argue that the causality is reversed: the constraints on control-dependent behavior reflect a rational bound that control mechanisms impose on processing, to prevent processing interference that arises if two or more tasks engage the same resource to be executed. We use both mathematical and numerical analyses of shared representations in neural network architectures to articulate the theory, and demonstrate its ability to explain a wide range of phenomena associated with control-dependent behavior. Furthermore, we argue that the need for control, arising from the shared use of the same resources by different tasks, reflects the optimization of a fundamental tradeoff intrinsic to network architectures: the increase in learning efficacy associated with the use of shared representations, versus the efficiency of parallel processing (i.e., multitasking) associated with task-dedicated representations. The theory helps frame a formally rigorous, normative approach to the tradeoff between control-dependent processing versus automaticity, and relates to a number of other fundamental principles and phenomena concerning cognitive function, and computation more generally.


2020 ◽  
Author(s):  
Ronnypetson Da Silva ◽  
Valter M. Filho ◽  
Mario Souza

Many works that apply Deep Neural Networks (DNNs) to Speech Emotion Recognition (SER) use single datasets or train and evaluate the models separately when using multiple datasets. Those datasets are constructed with specific guidelines and the subjective nature of the labels for SER makes it difficult to obtain robust and general models. We investigate how DNNs learn shared representations for different datasets in both multi-task and unified setups. We also analyse how each dataset benefits from others in different combinations of datasets and popular neural network architectures. We show that the longstanding belief of more data resulting in more general models doesn’t always hold for SER, as different dataset and meta-parameter combinations hold the best result for each of the analysed datasets.


NeuroImage ◽  
2020 ◽  
Vol 217 ◽  
pp. 116909
Author(s):  
Xiaoqian Xiao ◽  
Yu Zhou ◽  
Jing Liu ◽  
Zhifang Ye ◽  
Li Yao ◽  
...  

2020 ◽  
Vol 14 ◽  
Author(s):  
Akihiro Eguchi ◽  
Takato Horii ◽  
Takayuki Nagai ◽  
Ryota Kanai ◽  
Masafumi Oizumi

2019 ◽  
Author(s):  
Francesca Ciardo ◽  
Agnieszka Wykowska

Effective social interactions rely on humans’ ability to attune to others within social contexts. Recently, it has been proposed that the emergence of shared representations, as indexed by the Joint Simon effect (JSE), might result from interpersonal coordination (Malone et al., 2014). The present study aimed at examining interpersonal coordination in cooperative and competitive joint tasks. To this end, in two experiments we investigated response coordination, as reflected in instantaneous cross-correlation, when co-agents cooperate (Experiment 1) or compete against each other (Experiment 2). In both experiments, participants performed a go/no-go Simon task alone and together with another agent in two consecutive sessions. In line with previous studies, we found that social presence differently affected the JSE under cooperative and competitive instructions. Similarly, cooperation and competition were reflected in co-agents response coordination. For the cooperative session (Experiment 1), results showed higher percentage of interpersonal coordination for the joint condition, relative to when participants performed the task alone. No difference in the coordination of responses occurred between the individual and the joint conditions when co-agents were in competition (Experiment 2). Finally, results showed that interpersonal coordination between co-agents implies the emergence of the JSE. Taken together, our results suggest that shared representations seem to be a necessary, but not sufficient, condition for interpersonal coordination.


2019 ◽  
Vol 3 (CSCW) ◽  
pp. 1-30 ◽  
Author(s):  
Sukrit Venkatagiri ◽  
Jacob Thebault-Spieker ◽  
Rachel Kohler ◽  
John Purviance ◽  
Rifat Sabbir Mansur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document