contraction method
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 25)

H-INDEX

13
(FIVE YEARS 2)

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Joanna Akrouche ◽  
Mohamed Sallak ◽  
Eric Châtelet ◽  
Fahed Abdallah ◽  
Hiba Hajj Chehade

Most existing studies of a system’s availability in the presence of epistemic uncertainties assume that the system is binary. In this paper, a new methodology for the estimation of the availability of multi-state systems is developed, taking into consideration epistemic uncertainties. This paper formulates a combined approach, based on continuous Markov chains and interval contraction methods, to address the problem of computing the availability of multi-state systems with imprecise failure and repair rates. The interval constraint propagation method, which we refer to as the forward–backward propagation (FBP) contraction method, allows us to contract the probability intervals, keeping all the values that may be consistent with the set of constraints. This methodology is guaranteed, and several numerical examples of systems with complex architectures are studied.


2021 ◽  
Vol 165 ◽  
pp. 1-21
Author(s):  
Yekini Shehu ◽  
Lulu Liu ◽  
Xuewen Mu ◽  
Qiao-Li Dong

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ming Tian ◽  
Gang Xu

AbstractThe objective of this article is to solve pseudomonotone variational inequality problems in a real Hilbert space. We introduce an inertial algorithm with a new self-adaptive step size rule, which is based on the projection and contraction method. Only one step projection is used to design the proposed algorithm, and the strong convergence of the iterative sequence is obtained under some appropriate conditions. The main advantage of the algorithm is that the proof of convergence of the algorithm is implemented without the prior knowledge of the Lipschitz constant of cost operator. Numerical experiments are also put forward to support the analysis of the theorem and provide comparisons with related algorithms.


2021 ◽  
Author(s):  
◽  
Jasmin Straub

Within the last thirty years, the contraction method has become an important tool for the distributional analysis of random recursive structures. While it was mainly developed to show weak convergence, the contraction approach can additionally be used to obtain bounds on the rate of convergence in an appropriate metric. Based on ideas of the contraction method, we develop a general framework to bound rates of convergence for sequences of random variables as they mainly arise in the analysis of random trees and divide-and-conquer algorithms. The rates of convergence are bounded in the Zolotarev distances. In essence, we present three different versions of convergence theorems: a general version, an improved version for normal limit laws (providing significantly better bounds in some examples with normal limits) and a third version with a relaxed independence condition. Moreover, concrete applications are given which include parameters of random trees, quantities of stochastic geometry as well as complexity measures of recursive algorithms under either a random input or some randomization within the algorithm.


Sign in / Sign up

Export Citation Format

Share Document