rf gun
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1376
Author(s):  
Huamu Xie

With the growing demand from scientific projects such as the X-ray free electron laser (XFEL), ultrafast electron diffraction/microscopy (UED/UEM) and electron ion collider (EIC), the semiconductor photocathode, which is a key technique for a high brightness electron source, has been widely studied in China. Several fabrication systems have been designed and constructed in different institutes and the vacuum of most systems is in the low 10−8 Pa level to grow a high QE and long lifetime photocathode. The QE, dark lifetime/bunch lifetime, spectral response and QE map of photocathodes with different kinds of materials, such as bialkali (K2CsSb, K2NaSb, etc.), Cs2Te and GaAs, have been investigated. These photocathodes will be used to deliver electron beams in a high voltage DC gun, a normal conducting RF gun, and an SRF gun. The emission physics of the semiconductor photocathode and intrinsic emittance reduction are also studied.


2021 ◽  
Vol 32 (9) ◽  
Author(s):  
Cheng Wang ◽  
Jian-Hao Tan ◽  
Xiao-Xia Huang ◽  
Yi-Xing Lu ◽  
Lin Wang ◽  
...  
Keyword(s):  
Rf Test ◽  

Instruments ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 28
Author(s):  
Eva Panofski ◽  
Ralph Assmann ◽  
Florian Burkart ◽  
Ulrich Dorda ◽  
Luca Genovese ◽  
...  

Over the years, the generation and acceleration of ultra-short, high quality electron beams has attracted more and more interest in accelerator science. Electron bunches with these properties are necessary to operate and test novel diagnostics and advanced high-gradient accelerating schemes, such as plasma accelerators and dielectric laser accelerators. Furthermore, several medical and industrial applications require high-brightness electron beams. The dedicated R&D facility ARES at DESY (Deutsches Elektronen-Synchrotron) will provide such probe beams in the upcoming years. After the setup of the normal-conducting, radio-frequency (RF) photoinjector and linear accelerating structures, ARES successfully started the beam commissioning of the RF gun. This paper gives an overview of the ARES photoinjector setup and summarizes the results of the gun commissioning process. The quality of the first electron beams is characterized in terms of charge, momentum, momentum spread and beam size. Additionally, the dependencies of the beam parameters on RF settings are described. All measurement results of the characterized beams fulfill the requirements for operating the ARES linac with this RF photoinjector.


Author(s):  
Cheng Wang ◽  
Jianhao Tan ◽  
Zihan Zhu ◽  
Xiaoxia Huang ◽  
Lin Wang ◽  
...  
Keyword(s):  
Rf Test ◽  

Sign in / Sign up

Export Citation Format

Share Document