motif clustering
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Marc Creixell ◽  
Aaron Samuel Meyer

Cell signaling is orchestrated in part through a network of protein kinases and phosphatases. Dysregulation of kinase signaling is widespread in diseases such as cancer and is readily targetable through inhibitors of kinase enzymatic activity. Mass spectrometry-based analysis of kinase signaling can provide a global view of kinase signaling regulation but making sense of these data is complicated by its stochastic coverage of the proteome, measurement of substrates rather than kinase signaling itself, and the scale of the data collected. Here, we implement a dual data and motif clustering strategy (DDMC) that simultaneously clusters substrate peptides into similarly regulated groups based on their variation within an experiment and their sequence profile. We show that this can help to identify putative upstream kinases and supply more robust clustering. We apply this clustering to large-scale clinical proteomic profiling of lung cancer and identify conserved proteomic signatures of tumorigenicity, genetic mutations, and tumor immune infiltration. We propose that DDMC provides a general and flexible clustering strategy for the analysis of phosphoproteomic data.


2019 ◽  
Vol 5 ◽  
pp. e180 ◽  
Author(s):  
Yufan Feng ◽  
Shuo Yu ◽  
Kaiyuan Zhang ◽  
Xiangli Li ◽  
Zhaolong Ning

With the development of science and technology, network scales of various fields have experienced an amazing growth. Networks in the fields of biology, economics and society contain rich hidden information of human beings in the form of connectivity structures. Network analysis is generally modeled as network partition and community detection problems. In this paper, we construct a community property-based triangle motif clustering scheme (COMICS) containing a series of high efficient graph partition procedures and triangle motif-based clustering techniques. In COMICS, four network cuttingconditionsare considered based on the network connectivity. We first divide the large-scale networks into many dense subgraphs under the cuttingconditionsbefore leveraging triangle motifs to refine and specify the partition results. To demonstrate the superiority of our method, we implement the experiments on three large-scale networks, including two co-authorship networks (the American Physical Society (APS) and the Microsoft Academic Graph (MAG)), and two social networks (Facebook and gemsec-Deezer networks). We then use two clustering metrics, compactness and separation, to illustrate the accuracy and runtime of clustering results. A case study is further carried out on APS and MAG data sets, in which we construct a connection between network structures and statistical data with triangle motifs. Results show that our method outperforms others in both runtime and accuracy, and the triangle motif structures can bridge network structures and statistical data in the academic collaboration area.


2019 ◽  
Author(s):  
Dechao Tian ◽  
Ruochi Zhang ◽  
Yang Zhang ◽  
Xiaopeng Zhu ◽  
Jian Ma

The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome modules (HIMs) in the nucleus. Each HIM represents a cluster of gene loci that are in spatial contact more frequently than expected and that are regulated by the same group of transcription factor proteins. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify HIMs, which may provide new perspectives on 3D genome organization and function.


Sign in / Sign up

Export Citation Format

Share Document