model organism databases
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 4)

Development ◽  
2021 ◽  
Vol 148 (19) ◽  
Author(s):  
Hugo J. Bellen ◽  
E. J. A. Hubbard ◽  
Ruth Lehmann ◽  
Hiten D. Madhani ◽  
Lila Solnica-Krezel ◽  
...  

Database ◽  
2021 ◽  
Vol 2021 ◽  
Author(s):  
Valerio Arnaboldi ◽  
Jaehyoung Cho ◽  
Paul W Sternberg

Abstract Finding relevant information from newly published scientific papers is becoming increasingly difficult due to the pace at which articles are published every year as well as the increasing amount of information per paper. Biocuration and model organism databases provide a map for researchers to navigate through the complex structure of the biomedical literature by distilling knowledge into curated and standardized information. In addition, scientific search engines such as PubMed and text-mining tools such as Textpresso allow researchers to easily search for specific biological aspects from newly published papers, facilitating knowledge transfer. However, digesting the information returned by these systems—often a large number of documents—still requires considerable effort. In this paper, we present Wormicloud, a new tool that summarizes scientific articles in a graphical way through word clouds. This tool is aimed at facilitating the discovery of new experimental results not yet curated by model organism databases and is designed for both researchers and biocurators. Wormicloud is customized for the Caenorhabditis  elegans literature and provides several advantages over existing solutions, including being able to perform full-text searches through Textpresso, which provides more accurate results than other existing literature search engines. Wormicloud is integrated through direct links from gene interaction pages in WormBase. Additionally, it allows analysis on the gene sets obtained from literature searches with other WormBase tools such as SimpleMine and Gene Set Enrichment. Database URL: https://wormicloud.textpressolab.com


2020 ◽  
Vol 16 (11) ◽  
pp. e1008376
Author(s):  
Anne E. Thessen ◽  
Ramona L. Walls ◽  
Lars Vogt ◽  
Jessica Singer ◽  
Robert Warren ◽  
...  

The rapidly decreasing cost of gene sequencing has resulted in a deluge of genomic data from across the tree of life; however, outside a few model organism databases, genomic data are limited in their scientific impact because they are not accompanied by computable phenomic data. The majority of phenomic data are contained in countless small, heterogeneous phenotypic data sets that are very difficult or impossible to integrate at scale because of variable formats, lack of digitization, and linguistic problems. One powerful solution is to represent phenotypic data using data models with precise, computable semantics, but adoption of semantic standards for representing phenotypic data has been slow, especially in biodiversity and ecology. Some phenotypic and trait data are available in a semantic language from knowledge bases, but these are often not interoperable. In this review, we will compare and contrast existing ontology and data models, focusing on nonhuman phenotypes and traits. We discuss barriers to integration of phenotypic data and make recommendations for developing an operationally useful, semantically interoperable phenotypic data ecosystem.


2020 ◽  
Vol 48 (W1) ◽  
pp. W538-W545 ◽  
Author(s):  
Adrian M Altenhoff ◽  
Javier Garrayo-Ventas ◽  
Salvatore Cosentino ◽  
David Emms ◽  
Natasha M Glover ◽  
...  

Abstract The identification of orthologs—genes in different species which descended from the same gene in their last common ancestor—is a prerequisite for many analyses in comparative genomics and molecular evolution. Numerous algorithms and resources have been conceived to address this problem, but benchmarking and interpreting them is fraught with difficulties (need to compare them on a common input dataset, absence of ground truth, computational cost of calling orthologs). To address this, the Quest for Orthologs consortium maintains a reference set of proteomes and provides a web server for continuous orthology benchmarking (http://orthology.benchmarkservice.org). Furthermore, consensus ortholog calls derived from public benchmark submissions are provided on the Alliance of Genome Resources website, the joint portal of NIH-funded model organism databases.


2019 ◽  
Vol 48 (D1) ◽  
pp. D1-D8 ◽  
Author(s):  
Daniel J Rigden ◽  
Xosé M Fernández

Abstract The 2020 Nucleic Acids Research Database Issue contains 148 papers spanning molecular biology. They include 59 papers reporting on new databases and 79 covering recent changes to resources previously published in the issue. A further ten papers are updates on databases most recently published elsewhere. This issue contains three breakthrough articles: AntiBodies Chemically Defined (ABCD) curates antibody sequences and their cognate antigens; SCOP returns with a new schema and breaks away from a purely hierarchical structure; while the new Alliance of Genome Resources brings together a number of Model Organism databases to pool knowledge and tools. Major returning nucleic acid databases include miRDB and miRTarBase. Databases for protein sequence analysis include CDD, DisProt and ELM, alongside no fewer than four newcomers covering proteins involved in liquid–liquid phase separation. In metabolism and signaling, Pathway Commons, Reactome and Metabolights all contribute papers. PATRIC and MicroScope update in microbial genomes while human and model organism genomics resources include Ensembl, Ensembl genomes and UCSC Genome Browser. Immune-related proteins are covered by updates from IPD-IMGT/HLA and AFND, as well as newcomers VDJbase and OGRDB. Drug design is catered for by updates from the IUPHAR/BPS Guide to Pharmacology and the Therapeutic Target Database. The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). The NAR online Molecular Biology Database Collection has been revised, updating 305 entries, adding 65 new resources and eliminating 125 discontinued URLs; so bringing the current total to 1637 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1189-1196 ◽  
Author(s):  

Model organisms are essential experimental platforms for discovering gene functions, defining protein and genetic networks, uncovering functional consequences of human genome variation, and for modeling human disease. For decades, researchers who use model organisms have relied on Model Organism Databases (MODs) and the Gene Ontology Consortium (GOC) for expertly curated annotations, and for access to integrated genomic and biological information obtained from the scientific literature and public data archives. Through the development and enforcement of data and semantic standards, these genome resources provide rapid access to the collected knowledge of model organisms in human readable and computation-ready formats that would otherwise require countless hours for individual researchers to assemble on their own. Since their inception, the MODs for the predominant biomedical model organisms [Mus sp. (laboratory mouse), Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Danio rerio, and Rattus norvegicus] along with the GOC have operated as a network of independent, highly collaborative genome resources. In 2016, these six MODs and the GOC joined forces as the Alliance of Genome Resources (the Alliance). By implementing shared programmatic access methods and data-specific web pages with a unified “look and feel,” the Alliance is tackling barriers that have limited the ability of researchers to easily compare common data types and annotations across model organisms. To adapt to the rapidly changing landscape for evaluating and funding core data resources, the Alliance is building a modern, extensible, and operationally efficient “knowledge commons” for model organisms using shared, modular infrastructure.


2019 ◽  
Vol 48 (D1) ◽  
pp. D650-D658 ◽  
Author(s):  
◽  
Julie Agapite ◽  
Laurent-Philippe Albou ◽  
Suzi Aleksander ◽  
Joanna Argasinska ◽  
...  

Abstract The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource.


2017 ◽  
Author(s):  
Yanhui Hu ◽  
Aram Comjean ◽  
Stephanie E. Mohr ◽  
Norbert Perrimon ◽  
Julie Agapite ◽  
...  

AbstractOne of the most powerful ways to develop hypotheses regarding biological functions of conserved genes in a given species, such as in humans, is to first look at what is known about function in another species. Model organism databases (MODs) and other resources are rich with functional information but difficult to mine. Gene2Function (G2F) addresses a broad need by integrating information about conserved genes in a single online resource.


Author(s):  
Stacia R. Engel ◽  
Kevin A. MacPherson

BMC Biology ◽  
2016 ◽  
Vol 14 (1) ◽  
Author(s):  
Stephen G. Oliver ◽  
Antonia Lock ◽  
Midori A. Harris ◽  
Paul Nurse ◽  
Valerie Wood

Sign in / Sign up

Export Citation Format

Share Document