maximum settlement
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 16)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Shaokun Ma ◽  
Fapai Tian ◽  
Zhen Huang ◽  
Hu Lu ◽  
Xiaoxi Fu ◽  
...  

Abstract The process of excavation and unloading of a deep subway foundation pit will cause deformation of the surrounding buildings. There are significant differences in building deformation due to different methods of supporting the foundation pit and building foundation forms. This study takes the deep foundation pit project of the station as an example to investigate this difference. A three-dimensional numerical finite element model of a deep foundation pit has been established that considers different types of building foundations (independent foundation, box foundation, and pile foundation). The sensitivity of the two supporting methods of the diaphragm wall and the combined support of isolation pile and diaphragm wall regarding the maximum settlement value of the building, the horizontal inclination value, the slope angle, and the foundation angular distortions were analyzed. Finally, the sensitivity of the length of the isolated pile to the maximum settlement value and the horizontal displacement value of different types of building foundations are discussed. The results show that the combined support method of isolation piles and diaphragm walls has the highest supporting efficiency (93.5% of independent foundations and 42.3% of box foundations) for angular distortions of shallow foundation buildings. The efficiency of pile foundation support is the lowest (31.4%). For the combined support method of isolation piles and diaphragm walls, the maximum settlement value, and the value of horizontal displacement of the building will decrease with increasing the length of isolation pile. When the depth of isolation pile is greater than 24 m, the settlement deceleration rate of the independent foundation and the pile foundation slows down; when the depth of isolation pile is greater than 27 m, the settlement deceleration rate of the box foundation will slow down, and the deceleration rate of the horizontal displacement of the independent foundation and box foundation will slow down.


2021 ◽  
Vol 4 (3) ◽  
pp. 671
Author(s):  
Jeffri Ardianto ◽  
Chaidir Anwar Makarim

Construction of houses on slopes certainly has risks that can cause landslides on the slopes. One of the construction projects on slope area experienced a construction failure which caused the destruction of a 2-storey house. It is suspected that the planning of the building did not take into account the optimal rainfall. The author makes a model analysis similar to that case using a shallow foundation. The subgrade in this case is soft soil from rice fields which is then backfilled with silty clay. The soft soil beneath this embankment experiences creep, where the soil continues to move slowly even without a load. The author analyzes the settlement due to creep manually. The author also analyzes the safety factor of slope stability due to rising ground water levels. Based on the calculation results, the settlement was obtained at 14,8456 cm which is almost close to the maximum settlement limit of 15 cm. While the safety factor obtained from the application of the equilibrium limit before the rain is 1,311 but after experiencing a 5 m increase in ground water the safety factor is 1,032 which is less than 1,25.Keywords: creep, settlement, shallow foundation, slope stabilityPembangunan rumah di daerah lereng tentu memiliki risiko yang dapat menyebabkan kelongsoran pada daerah lereng. Salah satu proyek pembangunan pada suatu daerah lereng mengalami kegagalan konstruksi yang menyebabkan hancurnya rumah tinggal 2 lantai. Diduga dalam perencanaan bangunan tidak memperhitungkan curah hujan optimal. Penulis membuat analisis model yang mirip dengan kasus tersebut dengan menggunakan fondasi dangkal. Tanah dasar pada kasus ini adalah tanah lunak bekas persawahan yang kemudian di timbun dengan tanah lempung kelanauan. Tanah lunak di bawah tanah timbunan ini mengalami rangkak yang dimana tanah terus bergerak secara lambat walaupun tanpa adanya beban. Penulis menganalisis penurunan akibat dari rangkak secara manual. Penulis juga menganalisis faktor keamanan kestabilan lereng akibat dari naiknya muka air tanah. Berdasarkan hasil perhitungan, penurunan total terbesar diperoleh sebesar 14,8456 cm yang hampir mendekati batas penurunan maksimum 15 cm. Sedangkan faktor keamanan yang diperoleh dari aplikasi kesetimbangan batas sebelum hujan sebesar 1,311 tetapi setelah mengalami kenaikan muka air tanah 5 m faktor keamanannya sebesar 1,187 yang dimana faktor keamanan kurang dari 1,25.Kata kunci: rangkak, penurunan tanah, fondasi dangkal, kestabilan lereng


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Ali Lakirouhani ◽  
Reyhaneh Jafari ◽  
Hadi Hasanzadehshooiili

In this paper, a three-dimensional finite difference analysis is presented to investigate the interactive effects of sequential tunneling and the superstructure on the settlement profile of the ground. To simulate the practical sequential tunneling procedure, tunnel excavation is conducted in a step-by-step framework; tunnel excavation starts from the beginning of the model and is updated in a continuous manner, and the installation of the tunnel support system is done with a delay step compared to tunnel excavation. The numerical modeling accuracy is validated using the available analytical and numerical solutions for both two-dimensional and three-dimensional simplified cases. The well-validated modeling procedure is adopted to investigate effects of tunnel diameter, depth of tunneling, and number of superstructure stories on the profile of occurring settlements. Two cases of free-field and three-dimensional superstructural modeling are compared with regard to the effect of tunneling. In addition, the effect of tunneling advancement on the generation of excess structural forces and moments are studied as another important factor in the soil-tunneling-superstructure interaction problem. It is observed that, in the free-field case, with advancing the tunnel face, the longitudinal settlement profiles approach the steady-state condition and the maximum ground settlement tends to converge to a specific value, whereas as the tunnel passes under a structure, the settlement increases steadily as the tunnel progresses. There is a direct relationship between the depth and diameter of the tunnel and the settlement. In addition, the effect of the number of superstructure stories on the maximum settlement is more considerable compared to the free-field condition. According to the results, when the tunnel passes under 8-story and 12-story structures, the maximum settlement increases by 40% and 70%, respectively, compared to the free-field condition. It is also shown that tunneling-induced settlements result in the regeneration of structural forces.


In densely built areas, development of underground transportation system often involves excavations for basement construction and cut-and-cover tunnels which are sometimes inevitable to be constructed adjacent to existing structure. Inadequate support systems have always been major concern as excessive ground movement induced during excavation could damage to neighbouring structure. A detailed parametric analysis of the ground deformation mechanism due to excavation with different depths in sand with different densities (Dr=30%, 50%, 70% and 90%) is presented. 3D finite element analyses were carried out using a hypoplastic model, which considers strain-dependent and path-dependent soil stiffness. The computed results have revealed that the maximum settlement decreased substantially when the excavation is carried out in the sand with higher relative density. This is because of reason that sand with higher relative density possesses higher stiffness. Moreover, the depth of the maximum settlement of the wall decreases as the sandbecome denser.The ground movement flow is towards excavation in retained side of the excavation. On the other hand the soil heave was induced below the formation level at excavation side. The maximum strain level of 2.4% was induced around the diaphragm wall.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shao Yu ◽  
Riyan Lan ◽  
Junhui Luo ◽  
Zhibo Duan ◽  
Shaokun Ma

To efficiently and accurately predict the effects of twin tunneling on adjacent buried pipelines, the effects of upward and downward relative pipeline-soil interactions were considered. A series of numerical parametric studies encompassing 8640 conditions were performed to investigate the responses of a pipeline to twin tunneling. Based on the dimensionless analysis and normalized calculation results, the concept of equivalent relative pipeline-soil stiffness was proposed. Additionally, expressions for the relative pipeline-soil stiffness and relative pipeline curvature and for the relative pipeline-soil stiffness and relative pipeline settlement were established, along with the related calculation plots. Relying on a comparison of prediction results, centrifuge model test results, and field measured results, the accuracy and reliability of the obtained expressions for predicting the bending strain and settlement of adjacent buried pipelines caused by twin tunneling were validated. Based on the calculation method, the maximum bending strain and maximum settlement of pipelines can be calculated precisely when the pipeline parameters, burial depth, soil parameters, and curve parameters of ground settlement due to tunneling are provided. The proposed expressions can be used not only to predict the maximum bending strain and maximum settlement of pipelines caused by single and twin tunneling but also to evaluate the effects of single and twin tunneling on the safety of existing buried pipelines. The relevant conclusions of this article can also provide a theoretical basis for the normal service of buried pipelines adjacent to subway tunnels.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qingsong Du ◽  
Guoyu Li ◽  
Yu Zhou ◽  
Mingtang Chai ◽  
Dun Chen ◽  
...  

The fragile habitat of alpine mining areas can be greatly affected by surface disturbances caused by mining activities, particularly open-pit mining activities, which greatly affect the periglacial environment. SBAS-InSAR technology enables the processing of SAR images to obtain highly accurate surface deformation information. This paper applied SBAS-InSAR technology to obtain three years of surface subsidence information based on the 89-scene Sentinel-1A SLC products, covering a mining area (tailings and active areas) in the Tianshan Mountains and its surroundings from 25th December 2017 to 2nd January 2021. The data were adopted to analyze the characteristics of deformation in the study region and the mining areas, and the subsidence accumulation was compared with field GNSS observation results to verify its accuracy. The results showed that the study area settled significantly, with a maximum settlement rate of −44.80 mm/a and a maximum uplift rate of 28.04 mm/a. The maximum settlement and accumulation of the whole study area over the three-year period were −129.39 mm and 60.49 mm, respectively. The mining area had a settlement value of over 80 mm over the three years. Significantly, the settlement rates of the tailings and active areas were −35 mm/a and −40 mm/a, respectively. Debris accumulation in the eastern portion of the tailings and active areas near the mountain was serious, with accumulation rates of 25 mm/a and 20 mm/a, respectively, and both had accumulation amounts of around 70 mm. For mine tailing pile areas with river flows, the pile locations and environmental restoration should be appropriately adjusted at a later stage. For gravel pile areas, regular cleaning should be carried out, especially around the mining site and at the tunnel entrances and exits, and long-term deformation monitoring of these areas should be carried out to ensure safe operation of the mining site. The SBAS-InSAR measurements were able to yield deformations with high accuracies over a wide area and cost less human and financial resources than the GNSS measurement method. Furthermore, the measurement results were more macroscopic, with great application value for surface subsidence monitoring in alpine areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tiecheng Sun ◽  
Cancan Liu ◽  
Zurun Yue ◽  
Tianfei Hu ◽  
Yiming Liao

This study explores the distribution of stress and deformation on casings in heavy oil recovery wells and the distribution of stress in the thaw bulb in permafrost areas. Considering the expansion of the thaw bulb, the simulation analysis method is used to explore the internal mechanisms of vertical settlement displacement development and stress redistribution within thawed soil and casing. Calculation results show the following: (a) The maximum settlement of the thawed soil and the casing was positively correlated with the expansion of the thaw bulb. Although the settlement of the thawed soil was greater than that of the casing, the initial increase in maximum settlement difference between the thawed soil and the casing eventually tended to be constant due to stabilization of the thaw bulb’s expansion. (b) The size of the thaw bulb directly affects the redistribution of internal stress in thawed soil, leading to different distribution rules for the vertical displacement of thawed soil and casing with depth. (c) Beyond a certain formation depth, the vertical stress of thawed soil gradually transits from a tensile stress state to a compressive stress state. The depth of a soil layer whose horizontal stress value is initially greater than its vertical stress value will gradually deepen with an increase in thaw bulb radius. (d) There is no significant negative friction on the lateral wall of casing in yield state, but significant negative friction exists on the lateral wall of casing in elastic state. The vertical stress of casing in elastic state increased gradually with the increase of casing depth, due to the existence of continuous negative friction and dead weight.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mingji Zhao ◽  
Yun Cheng ◽  
Zhanping Song ◽  
Tong Wang ◽  
Yuwei Zhang ◽  
...  

During the construction of the underpass of a new tunnel, the excavation unloading effect disturbs surrounding rock masses and promotes surrounding rock deformation, inevitably changing stress and displacement in the existing tunnel. Taking Yangtaishan tunnel excavation of Shenzhen Metro Line 6 as an engineering example, effects of excavation programs of left and right lines on the deformation characteristics of newly excavated and existing tunnels were evaluated based on Midas numerical model and priority excavation advantages of the left line were determined. The settlement and horizontal deformation characteristics of the existing tunnel were analyzed using the construction monitoring method. Results showed that maximum settlement and horizontal deformation of the existing tunnel were 1.35 and 0.23 mm, respectively. Settlement of invert and inverted top along axis direction was from growth to decline, and then a V-shaped settlement trough was formed with maximum settlement values of 1.36 and 0.97 mm, respectively. Maximum settlement and uplift of the newly built tunnel appeared on the upper and bottom parts of invert, respectively. In the newly built tunnel segments, the top settlement was dominated and deformation was mainly distributed in both side areas. At the top of the existing tunnel segment, convergence settlement was 3.09 mm and settlement rate was slow first which was accelerated, then stabilized, and finally slowed down again which was opposite to the uplift development trend of the bottom of tunnel segment. The top of the existing tunnel segment showed four settlement stages, slow, rapid, stable, and slow settlement stages. Compared with the right line, preferential excavation of the left line had obvious advantages in terms of tunnel stability. The unloading effect of TBM excavation created vault settlement in the existing tunnels where actual settlement values were 1.12 and 1.13 times, which theoretically calculated settlement. The horizontal deformation of the existing tunnel was varied first linearly and then nonlinearly with maximum deformation in the convergence stage of 1.47 mm.


Author(s):  
A. V. Kvashuk ◽  
◽  
T. D. Dautova ◽  

The article considers the methods for calculating the predicted maximum settlement of buildings in the zone of influence of a deep pit in the conditions of St. Petersburg. There have been analyzed the results of calculations of the predicted maximum settlement by the semi-empirical method developed by Professor N. S. Nikiforova with the settlement values obtained in Plaxis 2D software package. The authors present the evaluation of the possibility of applying a semi-empirical method for determining the predicted settlement of the surrounding building development in the engineering and geological conditions of St. Petersburg.


2021 ◽  
Vol 283 ◽  
pp. 01019
Author(s):  
Liu Tianyun ◽  
Yu Changyi ◽  
Zhu Nan

The three-dimensional numerical model of the foundation pit engineering is established, and the fluid-structure coupling method is used to calculate the settlement of the pile foundation of the adjacent railway bridge caused by the excavation and dewatering of the foundation pit. The results show that the settlement range of the soil around the foundation pit reaches 140m, and the pile foundation of the railway bridge is within the influence range, but the maximum settlement value does not exceed the limit value specified in the design. The method used in this paper provides effective guidance for the construction optimization of the same type of projects and reduces the project cost.


Sign in / Sign up

Export Citation Format

Share Document