sorting signal
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 5)

H-INDEX

40
(FIVE YEARS 1)

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Miaomiao Shi ◽  
Stephanie E. Willing ◽  
Hwan Keun Kim ◽  
Olaf Schneewind ◽  
Dominique Missiakas

ABSTRACT Staphylococcus aureus causes reiterative and chronic persistent infections. This can be explained by the formidable ability of this pathogen to escape immune surveillance mechanisms. Cells of S. aureus display the abundant staphylococcal protein A (SpA). SpA binds to immunoglobulin (Ig) molecules and coats the bacterial surface to prevent phagocytic uptake. SpA also binds and cross-links variable heavy 3 (VH3) idiotype (IgM) B cell receptors, promoting B cell expansion and the secretion of nonspecific VH3-IgM via a mechanism requiring CD4+ T cell help. SpA binding to antibodies is mediated by the N-terminal Ig-binding domains (IgBDs). The so-called region X, uncharacterized LysM domain, and C-terminal LPXTG sorting signal for peptidoglycan attachment complete the linear structure of the protein. Here, we report that both the LysM domain and the LPXTG motif sorting signal are required for the B cell superantigen activity of SpA in a mouse model of infection. SpA molecules purified from staphylococcal cultures are sufficient to exert B cell superantigen activity and promote immunoglobulin secretion as long as they carry intact LysM and LPXTG motif domains with bound peptidoglycan fragments. The LysM domain binds the glycan chains of peptidoglycan fragments, whereas the LPXTG motif is covalently linked to wall peptides lacking glycan. These findings emphasize the complexity of SpA interactions with B cell receptors. IMPORTANCE The LysM domain is found in all kingdoms of life. While their function in mammals is not known, LysM domains of bacteria and their phage parasites are associated with enzymes that cleave or remodel peptidoglycan. Plants recognize microbe-associated molecular patterns such as chitin via receptors endowed with LysM-containing ectodomains. In plants, such receptors play equally important roles in defense and symbiosis signaling. SpA of S. aureus carries a LysM domain that binds glycan strands of peptidoglycan to influence defined B cell responses that divert pathogen-specific adaptive immune responses.


2021 ◽  
Vol 118 (12) ◽  
pp. e2019649118
Author(s):  
Scott A. McConnell ◽  
Rachel A. McAllister ◽  
Brendan R. Amer ◽  
Brendan J. Mahoney ◽  
Christopher K. Sue ◽  
...  

Gram-positive bacteria assemble pili (fimbriae) on their surfaces to adhere to host tissues and to promote polymicrobial interactions. These hair-like structures, although very thin (1 to 5 nm), exhibit impressive tensile strengths because their protein components (pilins) are covalently crosslinked together via lysine–isopeptide bonds by pilus-specific sortase enzymes. While atomic structures of isolated pilins have been determined, how they are joined together by sortases and how these interpilin crosslinks stabilize pilus structure are poorly understood. Using a reconstituted pilus assembly system and hybrid structural biology methods, we elucidated the solution structure and dynamics of the crosslinked interface that is repeated to build the prototypical SpaA pilus from Corynebacterium diphtheriae. We show that sortase-catalyzed introduction of a K190-T494 isopeptide bond between adjacent SpaA pilins causes them to form a rigid interface in which the LPLTG sorting signal is inserted into a large binding groove. Cellular and quantitative kinetic measurements of the crosslinking reaction shed light onto the mechanism of pilus biogenesis. We propose that the pilus-specific sortase in C. diphtheriae uses a latch mechanism to select K190 on SpaA for crosslinking in which the sorting signal is partially transferred from the enzyme to a binding groove in SpaA in order to facilitate catalysis. This process is facilitated by a conserved loop in SpaA, which after crosslinking forms a stabilizing latch that covers the K190-T494 isopeptide bond. General features of the structure and sortase-catalyzed assembly mechanism of the SpaA pilus are likely conserved in Gram-positive bacteria.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Seunghyi Kook ◽  
Dawn C Harper ◽  
Jude Franklin ◽  
Alexa Jaume ◽  
Hayley A Hanby ◽  
...  

2017 ◽  
Author(s):  
Peng Xu ◽  
Hannah M Hankins ◽  
Chris MacDonald ◽  
Samuel J Erlinger ◽  
Meredith N Frazier ◽  
...  

2017 ◽  
Author(s):  
Peng Xu ◽  
Hannah M. Hankins ◽  
Chris Macdonald ◽  
Samuel J. Erlinger ◽  
Meredith N. Frazier ◽  
...  

ABSTRACTThe COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI mediates delivery of a budding yeast SNARE (Snc1) from early endosomes to the Golgi complex through recognition of a polyubiquitin sorting signal. Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through early endosomes back to the Golgi for reuse. Removal of ubiquitin from Snc1, or deletion of a β’-COP subunit propeller domain that binds K63-linked polyubiquitin, causes aberrant accumulation of Snc1 in early endosomes. Moreover, replacement of the β’-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles at early endosomes for Golgi delivery.


2016 ◽  
Vol 27 (25) ◽  
pp. 4043-4054 ◽  
Author(s):  
Evan L. Guiney ◽  
Till Klecker ◽  
Scott D. Emr

Targeted endocytosis of plasma membrane (PM) proteins allows cells to adjust their complement of membrane proteins to changing extracellular conditions. For a wide variety of PM proteins, initiation of endocytosis is triggered by ubiquitination. In yeast, arrestin-related trafficking adaptors (ARTs) enable a single ubiquitin ligase, Rsp5, to specifically and selectively target a wide range of PM proteins for ubiquitination and endocytosis. However, the mechanisms that allow ARTs to specifically recognize their appropriate substrates are unknown. We present the molecular features in the methionine permease Mup1 that are required for Art1-Rsp5–mediated ubiquitination and endocytosis. A combination of genetics, fluorescence microscopy, and biochemistry reveals three critical features that comprise an ART sorting signal in the Mup1 N-terminal cytosolic tail: 1) an extended acidic patch, 2) in close proximity to the first Mup1 transmembrane domain, and 3) close to the ubiquitinated lysines. We show that a functionally similar ART sorting signal is also required for the endocytosis of a second Art1-dependent cargo, Can1, suggesting a common mechanism for recognition of Art1 substrates. We isolate two separate suppressor mutations in the Art1 C-terminal domain that allele-specifically restore endocytosis of two Mup1 acidic patch mutants, consistent with an interaction between the Art1 C-terminus and the Mup1 acidic patch. We propose that this interaction is required for recruitment of the Art1-Rsp5 ubiquitination complex.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167763 ◽  
Author(s):  
Michele D. Kattke ◽  
Albert H. Chan ◽  
Andrew Duong ◽  
Danielle L. Sexton ◽  
Michael R. Sawaya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document