jaw movement
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 21)

H-INDEX

37
(FIVE YEARS 1)

2022 ◽  
Vol 192 ◽  
pp. 106569
Author(s):  
Luciano S. Martinez-Rau ◽  
José O. Chelotti ◽  
Sebastián R. Vanrell ◽  
Julio R. Galli ◽  
Santiago A. Utsumi ◽  
...  

2021 ◽  
pp. 026765832110662
Author(s):  
Joanne Jingwen Li ◽  
Maria I. Grigos

This study aims to understand if Mandarin late learners of English can successfully manipulate acoustic and kinematic cues to deliver English stress contrast in production. Mandarin ( N = 8) and English ( N = 8) speakers were recorded producing English trochaic (initial stress) and iambic (final stress) items during a nonword repetition task. Speakers’ jaw movement for the utterances was tracked and analysed. Acoustic and kinematic cues were measured for each syllable, including acoustic duration, fundamental frequency (F0), and intensity, as well as jaw movement duration, displacement, peak velocity, and stiffness. Stress ratios (syllable 1 / syllable 2) were calculated for each cue and compared between groups. Results showed that English and Mandarin speakers had generally comparable performance in differentiating trochaic from iambic patterns, as well as in the degree of between-syllable contrast within each pattern. Between-group differences were only observed in acoustic duration and jaw movement velocity/stiffness. These results suggest that the experience with Mandarin stress contributes to Mandarin speakers’ overall successful production of English stress but also results in nonnative use of some acoustic/kinematic cues.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
J. Fischer ◽  
T. A. Augdal ◽  
O. Angenete ◽  
E. G. Gil ◽  
M. S. Skeie ◽  
...  

Abstract Background Children and adolescents with juvenile idiopathic arthritis (JIA) may suffer from temporomandibular disorder (TMD). Due to this, imaging diagnosis is crucial in JIA with non-symptomatic TM joint (TMJ) involvement. The aim of the study was to examine the association between clinical TMD signs/symptoms and cone-beam computed tomography (CBCT) findings of TMJ structural deformities in children and adolescents with JIA. Methods This cross-sectional study is part of a longitudinal prospective multi-centre study performed from 2015–2020, including 228 children and adolescents aged 4–16 years diagnosed with JIA, according to the International League of Associations for Rheumatology (ILAR). For this sub-study, we included the Bergen cohort of 72 patients (32 female, median age 13.1 years, median duration of JIA 4.5 years). Clinical TMD signs/symptoms were registered as pain on palpation, pain on jaw movement, and combined pain of those two. The severity of TMJ deformity was classified as sound (no deformity), mild, or moderate/severe according to the radiographic findings of CBCT. Results Of 72 patients, 21 (29.2%) had pain on palpation at and around the lateral pole, while 41 (56.9%) had TMJ pain upon jaw movement and 26 (36.1%) had pain from both. Of 141 TMJs, 18.4% had mild and 14.2% had moderate/severe structural deformities visible on CBCT. CBCT findings were not significantly associated with either the pain on palpation or the pain on jaw movement. A significant difference was found between structural deformities in CBCT and the combined pain outcome (pain at both palpation and movement) for both TMJs for the persistent oligoarticular subtype (p = 0.031). Conclusions There was no association between painful TMD and CBCT imaging features of the TMJ in patients with JIA, but the oligoarticular subtype of JIA, there was a significant difference associated with TMJ pain and structural CBCT deformities.


2021 ◽  
Author(s):  
◽  
Asante Emilia Boakyewaa

Development of the vertebrate nervous system involves substantial cell migration, where immature neurons move to specific locations to generate functional circuits. Precise neuronal migration and positioning are essential for proper brain architecture and function. Abnormal neuronal migration can contribute to neurological disorders such as lissencephaly, autism and schizophrenia. However, the consequences of abnormal neuronal migration for circuit organization and functional output are poorly understood. To provide some insight, I used the facial branchiomotor (FBM) neurons in zebrafish as a model system to analyze the effects of aberrant neuronal migration on circuit function. The FBM neurons are a subset of the branchiomotor neurons, which are generated in the vertebrate hindbrain and innervate facial and jaw muscles. During development in zebrafish and mice, FBM neurons migrate caudally from rhombomere 4 (r4) to r6 to form the facial motor nucleus and innervate jaw and gill muscles (in fish). In order to examine the consequences of aberrant neuronal migration, one must first characterize the normal functional output of the FBM circuit that drives jaw movements. In collaboration with colleagues in the MU Department of Computer Science, we developed an automated image analysis system to extract motion features from video recordings of jaw movement, enabling rapid and accurate high-throughput analysis. We used this software to examine the emergence of jaw movement in zebrafish larvae between 3-9 days post fertilization (dpf). While gape, the displacement of the lower jaw to form the mouth opening, was minimal at 3 dpf, gape frequency increased sharply by 5 dpf, and stabilized by 7 dpf. A detailed analysis of branchiomotor axons and neuromuscular junctions (NMJs) on jaw muscles suggest that this "maturation" of branchiomotor circuit output may be driven by changes in presynaptic structures at the jaw NMJs. To evaluate the consequences of defective neuronal migration on circuit output, I examined whether jaw movement was affected in the zebrafish off-limits (olt) mutant in which FBM neurons fail to migrate out of r4. In olt mutants, the increase in gape frequency occurred normally between 3-5 dpf. However, the average gape frequency was [approximately] 50 [percent] lower than wildtype siblings from 5-9 dpf while gape amplitude was unaffected. Given the jaw movement defect in olt mutants, I evaluated food intake, an independent measure of jaw movement and another functional output of the branchiomotor circuit. Olt mutants ate poorly compared to their wildtype siblings, consistent with their reduced jaw movement. I then tested several potential mechanisms that could generate the functional deficits in olt mutants. While fzd3a, the gene inactivated in olt mutants, is ubiquitously expressed in neural and non-neural tissues, jaw cartilage and muscle developed normally in olt mutants, and muscle function also appeared to be unaffected. Although FBM neurons were mispositioned in olt mutants, axon pathfinding to jaw muscles were unaffected. Moreover, neuromuscular junctions established by FBM neurons on jaw muscles were similar between wildtype siblings and olt mutants. Interestingly, FBM axons innervating the interhyoideus jaw muscle were frequently defasciculated in olt mutants. Furthermore, GCaMP imaging revealed that mutant FBM neurons were less active than their wildtype counterparts. These data suggest that aberrant positioning of FBM neurons in olt mutants results in subtle defects in fasciculation and neuronal activity, potentially generating defective functional outputs. In the future, we will examine modulatory inputs from other brain regions to the branchiomotor neurons and examine their roles in impacting circuit output in olt mutants.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247969
Author(s):  
Tai Kubo ◽  
Wenjie Zheng ◽  
Mugino O. Kubo ◽  
Xingsheng Jin

Jinyunpelta sinensis is a basal ankylosaurine dinosaur excavated from the mid Cretaceous Liangtoutang Formation of Jinyun County, Zhejiang Province, China. In the present study, its dental microwear was observed using a confocal laser microscope. Jinyunpelta had steep wear facets that covered most of buccal surfaces of posterior dentary teeth. Observation of dental microwear on the wear facet revealed that scratch orientation varied according to its location within the wear facet: vertically (i.e. apicobasally) oriented scratches were dominant in the upper half of the wear facet, and horizontally (i.e. mesiolaterally) oriented ones were in the bottom of the facet. These findings indicated that Jinyunpelta adopted precise tooth occlusion and biphasal jaw movement (orthal closure and palinal lower jaw movement). The biphasal jaw movement was widely observed among nodosaurids, among ankylosaurids, it was previously only known from the Late Cretaceous North American taxa, and not known among Asian ankylosaurids. The finding of biphasal jaw movement in Jinyunpelta showed sophisticate feeding adaptations emerged among ankylosaurids much earlier (during Albian or Cenomanian) than previously thought (during Campanian). The Evolution of the biphasal jaw mechanism that contemporaneously occurred among two lineages of ankylosaurs, ankylosaurids and nodosaurids, showed high evolutionary plasticity of ankylosaur jaw mechanics.


Sign in / Sign up

Export Citation Format

Share Document