somatic gene transfer
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 3)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Alexander J. Moszczynski ◽  
Madeline Harvey ◽  
Niveen Fulcher ◽  
Cleusa de Oliveira ◽  
Patrick McCunn ◽  
...  

Abstract Although it has been suggested that the co-expression of multiple pathological proteins associated with neurodegeneration may act synergistically to induce more widespread neuropathology, experimental evidence of this is sparse. We have previously shown that the expression of Thr175Asp-tau (tauT175D) using somatic gene transfer with a stereotaxically-injected recombinant adeno-associated virus (rAAV9) vector induces tau pathology in rat hippocampus. In this study, we have examined whether the co-expression of human tauT175D with mutant human TDP-43 (TDP-43M337V) will act synergistically. Transgenic female Sprague-Dawley rats that inducibly express mutant human TDP-43M337V using the choline acetyltransferase (ChAT) tetracycline response element (TRE) driver with activity modulating tetracycline-controlled transactivator (tTA) were utilized in these studies. Adult rats were injected with GFP-tagged tau protein constructs in a rAAV9 vector through bilateral stereotaxic injection into the hippocampus. Injected tau constructs were: wild-type GFP-tagged 2N4R human tau (tauWT; n = 8), GFP-tagged tauT175D 2N4R human tau (tauT175D, pseudophosphorylated, toxic variant, n = 8), and GFP (control, n = 8). Six months post-injection, mutant TDP-43M337V expression was induced for 30 days. Behaviour testing identified motor deficits within 3 weeks after TDP-43 expression irrespective of tau expression, though social behaviour and sensorimotor gating remained unchanged. Increased tau pathology was observed in the hippocampus of both tauWT and tauT175D expressing rats and tauT175D pathology was increased in the presence of cholinergic neuronal expression of human TDP-43M337V. These data indicate that co-expression of pathological TDP-43 and tau protein exacerbate the pathology associated with either individual protein.


2017 ◽  
Vol 114 (50) ◽  
pp. 13076-13084 ◽  
Author(s):  
Edward R. Kastenhuber ◽  
Gadi Lalazar ◽  
Shauna L. Houlihan ◽  
Darjus F. Tschaharganeh ◽  
Timour Baslan ◽  
...  

A segmental deletion resulting in DNAJB1–PRKACA gene fusion is now recognized as the signature genetic event of fibrolamellar hepatocellular carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young adults. Here we implement CRISPR-Cas9 genome editing and transposon-mediated somatic gene transfer to demonstrate that expression of either the endogenous fusion protein or a chimeric cDNA leads to the formation of indolent liver tumors in mice that closely resemble human FL-HCC. Notably, overexpression of the wild-type PRKACA was unable to fully recapitulate the oncogenic activity of DNAJB1–PRKACA, implying that FL-HCC does not simply result from enhanced PRKACA expression. Tumorigenesis was significantly enhanced by genetic activation of β-catenin, an observation supported by evidence of recurrent Wnt pathway mutations in human FL-HCC, as well as treatment with the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which causes tissue injury, inflammation, and fibrosis. Our study validates the DNAJB1–PRKACA fusion kinase as an oncogenic driver and candidate drug target for FL-HCC, and establishes a practical model for preclinical studies to identify strategies to treat this disease.


2013 ◽  
pp. 268-272
Author(s):  
Jia Yu ◽  
Zheng Chen ◽  
Jiangyang Lu ◽  
Tingting Liu ◽  
Liang Zhou ◽  
...  

The current knowledge base on circulating serum and plasma risk factors of the cognitive decline of degenerative Alzheimer’s Disease is linked to cholesterol homeostasis and lipoprotein disturbances (i.e., total cholesterol, 24S-hydroxy-cholesterol, lipoprotein(a), or apolipoprotein E. Lipoprotein lipase (LPL) is also expressed in the brain, with the highest levels found in the pyramidal cells of the hippocampus, suggesting a possible role for LPL in the regulation of cognitive function. Little is currently known, however, about the specific role of LPL in the brain. The authors of this chapter have generated an LPL-deficient mouse model that was rescued from neonatal lethality by somatic gene transfer. The levels of the presynaptic marker synaptophysin were reduced in the hippocampus while the levels of the post-synaptic marker PSD-95 remained unchanged in the LPL-deficient mice. The decreased frequency of mEPSC in LPL-deficient neurons indicated that the number of presynaptic vesicles was decreased, which was consistent with the decreases observed in the numbers of total vesicles and docking vesicles. These findings indicate that LPL plays an important role in learning and memory function, possibly by influencing presynaptic function.


Aquaculture ◽  
2013 ◽  
Vol 388-391 ◽  
pp. 60-69 ◽  
Author(s):  
Iciar Muñoz ◽  
Silvia Zanuy ◽  
María José Mazón ◽  
Manuel Carrillo ◽  
Ana Gómez

Author(s):  
Yi Li ◽  
Andrea Ferris ◽  
Brian C. Lewis ◽  
Sandra Orsulic ◽  
Bart O. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document