neonatal lethality
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 16)

H-INDEX

38
(FIVE YEARS 0)

Author(s):  
Minglei Zhao ◽  
Tingfang Mei ◽  
Bizhi Shang ◽  
Bin Zou ◽  
Qing Lian ◽  
...  

Congenital cataract is one of the leading causes of blindness in children worldwide. About one-third of congenital cataracts are caused by genetic defects. LSS, which encodes lanosterol synthase, is a causal gene for congenital cataracts. LSS is critical in preventing abnormal protein aggregation of various cataract-causing mutant crystallins; however, its roles in lens development remain largely unknown. In our study, we generated a mouse model harboring Lss G589S mutation, which is homologous to cataract-causing G588S mutation in human LSS. LssG589S/G589S mice exhibited neonatal lethality at postal day 0 (P0), whereas these mice showed severe opacity in eye lens. Also, we found that cataract was formed at E17.5 after we examined the opacity of embryonic lens from E13.5 to E18.5. Moreover, disrupted lens differentiation occurred at E14.5 prior to formation of the opacity of eye lens, shown as delayed differentiation of lens secondary fiber and disordered lens fiber organization. In addition, RNA-seq analysis indicated that cholesterol synthesis signaling pathways were significantly downregulated. Overall, our findings provide clear evidence that a mouse model harboring a homozygous Lss G589S mutation can recapitulate human congenital cataract. Our study points out that LSS functions as a critical determinant of lens development, which will contribute to better understanding LSS defects in cataractogenesis and developing therapies for cataracts.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hyae Yon Kweon ◽  
Mi-Ni Lee ◽  
Max Dorfel ◽  
Seungwoon Seo ◽  
Leah Gottlieb ◽  
...  

Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralogue with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.


2021 ◽  
Author(s):  
Gennadiy Tenin ◽  
Alexander Crozier ◽  
Kathryn E Hentges ◽  
Bernard Keavney

Tetralogy of Fallot (TOF) is considered to be the commonest type of cyanotic congenital heart disease (CHD). A previous GWAS showed significant association between TOF and single nucleotide polymorphisms in chromosome 13q31. Here through integration of population genomic and chromosomal interaction data we identify the heparan sulfate proteoglycan glypican-6 (GPC6) as the potentially responsible gene at the associated locus. We showed that GPC6 is expressed in the endocardial cushions at the appropriate time in development to contribute to TOF risk. We generated mice homozygous for a Gpc6 KO allele, which exhibit 100% neonatal lethality with severe cardiac malformations, namely TOF-type double outlet right ventricle (DORV) with rightward mal-positioned aorta and perimembranous ventricular septal defect (VSD), together with right ventricular (RV) hypertrophy and narrowing of the pulmonary artery. We established a dose-response relationship between Gpc6 expression and the anatomical severity of cardiac malformations. We showed the mouse knockout phenotype arises from abnormal morphology of the endocardial cushions, and tissue-specific knockout of Gpc6 in endothelial and neural crest cell lineages produces a phenotype featuring VSD and aortic malposition analogous to human TOF. This successful identification of a CHD gene from GWAS data suggests that larger GWA studies may find additional causative genes.


Nature ◽  
2021 ◽  
Author(s):  
Julien Oury ◽  
Wei Zhang ◽  
Nadia Leloup ◽  
Akiko Koide ◽  
Alexis D. Corrado ◽  
...  

AbstractCongenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Celia de la Calle Arregui ◽  
Ana Belén Plata-Gómez ◽  
Nerea Deleyto-Seldas ◽  
Fernando García ◽  
Ana Ortega-Molina ◽  
...  

AbstractThe mechanistic target of rapamycin complex 1 (mTORC1) integrates cellular nutrient signaling and hormonal cues to control metabolism. We have previously shown that constitutive nutrient signaling to mTORC1 by means of genetic activation of RagA (expression of GTP-locked RagA, or RagAGTP) in mice resulted in a fatal energetic crisis at birth. Herein, we rescue neonatal lethality in RagAGTP mice and find morphometric and metabolic alterations that span glucose, lipid, ketone, bile acid and amino acid homeostasis in adults, and a median lifespan of nine months. Proteomic and metabolomic analyses of livers from RagAGTP mice reveal a failed metabolic adaptation to fasting due to a global impairment in PPARα transcriptional program. These metabolic defects are partially recapitulated by restricting activation of RagA to hepatocytes, and revert by pharmacological inhibition of mTORC1. Constitutive hepatic nutrient signaling does not cause hepatocellular damage and carcinomas, unlike genetic activation of growth factor signaling upstream of mTORC1. In summary, RagA signaling dictates dynamic responses to feeding-fasting cycles to tune metabolism so as to match the nutritional state.


2020 ◽  
Author(s):  
Hyae Yon Kweon ◽  
Mi-Ni Lee ◽  
Max Dörfel ◽  
Seungwoon Seo ◽  
Leah Gottlieb ◽  
...  

AbstractThere is an enormous amount of variation in proteins introduced by co- and post-translational modifications, including N-terminal acetylation (NTA), catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40–50% of all mammalian proteins being potential substrates. However, the overall role of NTA on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo NTA impairment and, surprisingly, do not exhibit embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation (including an extra thoracic rib), piebaldism and urogenital anomalies. The lack of complete embryonic lethality in Naa10-null mice is explained by the discovery of Naa12, a previously unannotated Naa10-like paralogue with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, except for decreased fertility, whereas mice doubly deficient for Naa10 and Naa12 display embryonic lethality, thus presenting the complete machinery for NatA-mediated NTA in mouse development.


Author(s):  
Juliette Kaeffer ◽  
Gabrielle Zeder-Lutz ◽  
Frédéric Simonin ◽  
Sandra Lecat

: GPRASP (GPCR-associated sorting protein)/ARMCX (ARMadillo repeat-Containing proteins on the X chromosome) family is composed of 10 proteins, which genes are located on a small locus of the X chromosome except one. They possess at least two armadillo-like repeats on their carboxyl-terminal homologous sequence, but they can be subdivided on specific sequence features. Subfamily 1 (GPRASP1, GPRASP2, GPRASP3, ARMCX4 and ARMCX5) displays additional repeated motifs while a mitochondrial targeting transmembrane domain is present in subfamily 2 (ARMC10, ARMCX1, ARMCX2, ARMCX3 and ARMCX6). Although their roles are not yet fully understood, the recent identification of several interacting partners have shed new light on the processes in which GPRASP/ARMCX proteins are implicated. Among the interacting partners of proteins from subfamily 1, many are GPCRs. GPRASP1 binds trafficking proteins such as Beclin2 and the Dysbindin-HRS-Gas complex to participate in GPCR post-endocytic sorting. Moreover, in vitro as well as in vivo experiments indicate that GPRASP1 is a critical player in the adaptive responses related to chronic treatments with GPCR agonists. GPRASP2 seems to play a key role in the signalling of the hedgehog pathway in the primary cilium through a Smoothened-GPRASP2-Pifo complex. Identified small compound inhibitors of this complex could treat drug-resistant Smoothened derived cancer forms. Deletion of GPRASP2 in mice causes neurodevelopmental alteration and affects mGluR5 regulation, reflected by autism-like behaviour. Several members of subfamily 2, in complex with TRAK2 and MIRO, are involved in the trafficking of mitochondria in axons and on the regulation of their size and division, influencing the cell cycle. The essential role of GPRASP/ARMCX proteins in the cellular physiology is supported by human cases of deletions, causing male neonatal lethality by pulmonary delayed development, dysmorphic face and psychiatric and intellectual impacts in females.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-22
Author(s):  
Chia-Jui Ku ◽  
Steven Grzegorski ◽  
Jordan A. Shavit

Hemostasis is a natural protective process that developed to retain a circulating blood system, conferred by a complicated yet sophisticated balance of factors. Disturbances of this network result in thrombosis or hemorrhage. Among many well-characterized coagulation factors, protein C (PC) exhibits multifunctional roles including anticoagulant, cytoprotective, and anti-inflammatory activities. The importance of PC has been demonstrated not only by the increased risk of venous thrombosis in individuals with heterozygous deficiency, but also the observed neonatal lethality in patients. Knockout mice exhibit similar neonatal lethality, which has made it difficult to further study complete deficiency. The zebrafish is a vertebrate organism that is characterized by a powerful genetic system, prolific breeding, rapid and transparent development, and a well described and highly conserved coagulation cascade. Here we utilize genome editing to generate a null allele of the PC gene (proc) in zebrafish and discover that its loss not only impairs hemostatic balance, but also affects neutrophil recruitment to sites of tissue injury. Through examination of publicly available zebrafish genome sequence, we determined that the proc locus is duplicated in tandem, resulting in two closely adjacent copies with nearly identical sequences. We used CRISPR/Cas9 with two single guide RNAs flanking the entire locus to produce a 17.3 kilobase deletion that knocks out both copies of proc to produce a complete null mutation, verified by sequencing and quantitative PCR. proc-/- mutants survived well into adulthood, with ~50% lethality by seven months of age. The embryonic survival and accessibility enabled us to perform intravital microscopy to evaluate the hemostatic effects of PC deficiency. We used laser-induced endothelial injury on the posterior cardinal vein (PCV) at 3 days post fertilization (dpf), which typically results in rapid formation of an occlusive fibrin-rich thrombus. proc-/- mutants had an average time to occlusion of 60 seconds versus 13 seconds in controls (p < 0.0001), consistent with a consumptive coagulopathy, as previously seen in antithrombin III (at3) mutants. A transgenic background with fluorescently labeled fibrinogen showed that more than 95% of proc-/- mutants had spontaneous thrombi in the PCV, which was not present in controls. To assess the role of PC in inflammation, we used two different injury strategies, non-vascular tail transection and chemical treatment (copper sulfate), on 3 dpf zebrafish larvae. Staining for neutrophil granules revealed homing to the site of injury within 60-75 minutes. In proc-/- mutants we found an average 50% reduction in the number of neutrophils recruited to the site of injury yet counts in the caudal hematopoietic tissue (the site of larval hematopoiesis) were unchanged. Since protein S (PS) is a cofactor for PC anticoagulant function, we hypothesized that the consumptive coagulopathy, but not the neutrophil recruitment, would be PS-dependent. We used genome editing to disrupt the PS gene (pros1) and found that loss of PS also results in a mild consumptive coagulopathy, but spontaneous thrombus formation was less common in the PCV (25%) and was often in the heart instead (80%). Neutrophil recruitment was unaffected in pros1 mutants, and evaluation of double proc/pros1 mutants revealed no synergy in any of the phenotypes. In conclusion, PC and PS deficiency in zebrafish show some similarity to our previously reported model of AT3 deficiency, but the effects are less potent, allowing robust survival that enables in vivo analyses. Our data suggest that the thrombotic phenotypes of PC and PS deficiency are not identical, and display tissue-specific phenotypes. We also found evidence for PS-independent functions of PC in neutrophil migration. We speculate this is due to the role that PC plays in inflammation and signaling but cannot exclude a role in neutrophil extracellular trap (NET) formation. This model of complete proc-/- deficiency in an accessible organism will facilitate further in vivo study of PS-dependent and independent functions of PC, as well as interplay between the two factors. Disclosures Shavit: Bayer: Consultancy; Taked: Consultancy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Congyun Jin ◽  
Atsushi Yonezawa ◽  
Hiroki Yoshimatsu ◽  
Satoshi Imai ◽  
Madoka Koyanagi ◽  
...  

Abstract Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3−/−) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3−/− embryos. Slc52a3−/− mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice.


Sign in / Sign up

Export Citation Format

Share Document