polymerase basic 1
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

Author(s):  
Kurosh Kalantar ◽  
Zahra Farzaneh ◽  
Nasser Gholijani ◽  
Seyed Younes Hosseini ◽  
Ebrahim Bani Hasan

Influenza A virus (IAV) has the potential to cause pandemics with considerable health and socio-economic burdens. A viral protein, polymerase basic 1- frame2 (PB1-F2), as a virulence factor, has pro-apoptotic activity and contributes to viral pathogenesis by delaying viral clearance and inducing inflammation. Macrophages are susceptible to IAV infection and produce high levels of inflammatory cytokines and chemokines. In the present study, the pro-inflammatory effects of PB1-F2 derived peptide was evaluated by measuring the expression of key inflammatory mediators in murine macrophage cell line J774.1. PB1-F2 treated macrophages were examined for nitric oxide (NO) production, inflammatory cytokines, and enzymes expression and pro-inflammatory cytokines secretion using Griess reagent, real-time polymerase chain reaction (PCR) and ELISA, respectively. Our results have shown that PB1-F2 peptide at non-cytotoxic concentrations (0.1–0.8 µmol/mL) had no effect on NO production. When applied to Lipopolysaccharide (LPS)-treated macrophages, PB1-F2 peptide at 0.8 μmol/mLincreasedinducible NO synthase (iNOS), cyclooxygenase (COX)-2, and interleukin (IL)-6 genes expression to 2.02, 3.81, and 3.65 folds, respectively. PB1-F2 at concentrations of 0.4 and 0.8 µm/mL increased tumor necrosis factor (TNF)-α transcription by 4.15 and 5.55 fold. At posttranslational level, TNF-α increased from 166.5±13.88 in LPS-treated cells to 773.6±95.27 and 1485±76.31 at concentrations of 0.4 and 0.8 μmol/mL in PB1-F2 peptide, respectively. However, PB1-F2 Peptide did not have any significant effect on IL-6 production. These findings suggest that PB1-F2 peptide may partly exert its enhancing role in viral pathogenicity through the induction of inflammatory mediators in macrophages. Hence, targeting PB1-F2 peptide would be helpful in the reduction of viral infection complications.


2020 ◽  
Vol 21 (2) ◽  
pp. 202-211
Author(s):  
Doreen Szollosi ◽  
Ashley Bill

Background: Influenza is a single-stranded RNA virus that is highly contagious and infects millions of people in the U.S. annually. Due to complications, approximately 959,000 people were hospitalized and another 79,400 people died during the 2017-2018 flu season. While the best methods of prevention continue to be vaccination and hygiene, antiviral treatments may help reduce symptoms for those who are infected. Until recently, the only antiviral drugs in use have been the neuraminidase inhibitors: oseltamivir, zanamivir, and peramivir. Objective: We reviewed novel drug targets that can be used in the treatment of influenza, particularly in the case of neuraminidase inhibitor-resistant strains that may emerge. Results: More recently, a drug with a new mechanism of action has been approved. Baloxavir marboxil inhibits the influenza cap-dependent endonuclease that is needed for the virus to initiate replication within the host cell. This endonuclease target is within the polymerase acid (PA) subunit of RNA polymerase. Since the RNA-dependent RNA polymerase consists of two other subunits, polymerase basic 1 and 2, RNA polymerase has several targets that prevent viral replication. Other targets still under investigation include viral kinases, endocytosis, and viral fusion. Conclusion: Due to the possibility of viral mutations and resistance, it is important to have antivirals with different mechanisms available, especially in the case of a new pandemic strain. Several novel antivirals are within various stages of development and may represent new classes of treatments that can reduce symptoms and complications in those patients who may be at higher risk.


Author(s):  
Patrick D. Slaine ◽  
Cara MacRae ◽  
Mariel Kleer ◽  
Emily Lamoureux ◽  
Sarah McAlpine ◽  
...  

Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Typically, mouse-adaptation studies are conducted in inbred laboratory strains BALB/c and C57BL/6, which have defects in the antiviral Mx1 gene that results in increased susceptibility to infection and disease severity. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (a.k.a. CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L, and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering these three adaptive PB1 and PA mutations into the parental CA/07 strain, we demonstrated that adaptive mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions, and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation.


Sign in / Sign up

Export Citation Format

Share Document