Journal of Materials and Applications
Latest Publications


TOTAL DOCUMENTS

35
(FIVE YEARS 35)

H-INDEX

1
(FIVE YEARS 1)

Published By Tech Reviews Ltd

2051-7750, 2051-7742

2021 ◽  
Vol 10 (2) ◽  
pp. 53-62
Author(s):  
A. Donatelli ◽  
G. Casciaro ◽  
T. Marcianò ◽  
F. Caretto

This article assesses the technical feasibility of a recycling process based on grinding, melting and re-shaping of carbon fibers (CFs) reinforced thermoplastic polymers, in order to obtain new products that can be introduced in different markets, depending on mechanical properties retained. The idea at the basis of our study is that this kind of recycling process lies at the edge of the stages of recycling and re-use of materials, considering that the latter is preferable when considering the waste management hierarchy. Lower cost and similar mechanical strength of virgin CFs allowed the spread of recycled CFs in the automotive sector in the form of composite materials. Taking into account the Directive 2000/53/EC that sets out measures to prevent and limit waste from end-of-life (EoL) vehicles and their components, and ensures that where possible this is reused, recycled or recovered, we considered worth to investigate the recyclability of composite materials made with recycled CFs when they will reach the state of EoL materials. Considering this premise, an additional scope of this paper is therefore to provide some useful information about the possibility to perform a multiple closed loop recycling of rCF thermoplastic composites. Experiments carried out demonstrated that re-shaping of composites is technically feasible. Some square plates were produced without any setback. The mass balance of the recycling process demonstrated that about 88% of the EoL material can be recovered. Calculation of energy consumption showed that approximately 16 MJ are necessary in the treatment of 1 kg of EoL composites.


2021 ◽  
Vol 10 (2) ◽  
pp. 73-82
Author(s):  
Ranjit Laha

Metal nanoparticles (MNPs) embedded dielectric thin films are very crucial for many optoelectronic applications. This report investigates various ways of tuning the plasmonic properties of such nanocomposite thin films. For this, the well-known plasmon resonance condition was first generalized to include the shape and volume fraction of MNPs. This was followed by deriving an empirical formula for the resonance position (λR) which was worked out to be the positive root of a quadratic equation. The coefficients of the deduced quadratic relation involve the parameters obtained from the empirical fit to some of the experimental dielectric functions of MNPs available in literature. The derived working formula enables research community to tune the LSPR of nanocomposites in the whole range of visible wavelengths. The derived formula also concluded that with known lower volume fractions, shape of MNPs affects λR the most, compared to the other parameters. The derived formula was validated by calculating the full extinction spectra. It was shown for the first time that there exists an optimum value of oblate shape to give maximum resonance for a given nanocomposite.


2021 ◽  
Vol 10 (2) ◽  
pp. 63-72
Author(s):  
Carolina Vazquez ◽  
Eugenia Zelaya ◽  
Ana Maria Fortis ◽  
Patricia B. Bozzano

Due to low neutron absorption cross section, high mechanical strength, high thermal conductivity and good corrosion resistance in water and steam, Zirconium alloys are widely used as fuel cladding material in nuclear reactors. During life-time of a reactor the microstructure of this alloy is affected due to, among other factors, radiation damage and hydrogen damage. In this work mechanical properties changes on neutron irradiated Zr-1wt.% Nb at low temperatures (< 100 °C) and low dose (3.5 ´ 1023 n m-2 (E > 1 MeV)) were correlated with hydrides and crystal defects evolution during irradiation. To achieve this propose, tensile tests of: 1) Non-hydrided and non-irradiated material, 2) Hydrided and non-irradiated material and 3) Hydrided and irradiated material were performed at 25 ºC and 300 ºC. Different phases, hydrides and second phase precipitates were characterized by transmission electron microscopy (TEM) techniques. For the hydrided and irradiated material, the ductility decreased sharply with respect to the hydrided and non-irradiated material, among other factors, due to the change in the microstructure produced mainly by neutron irradiation. Even if the presence of the hydride ζ (zeta) was observed, both in the irradiated and non-irradiated material, tensile tests showed that ζ-hydrides did not affect ductility, since hydrided samples are more ductile than non-hydrided samples.


2021 ◽  
Vol 10 (2) ◽  
pp. 83-89
Author(s):  
Ehsan Maani Miandoab ◽  
Amir Hossein Jafari ◽  
Aref Valipour

The generation of electricity by renewable energies is an important need of today's society. Piezoelectric energy harvesting is one of these useful technologies which can generate electricity by applying external force on piezoelectric material. This study illustrates more power generation from piezoelectric tile by changing the situation of piezo discs and connect to proportional electrical circuit. Two different designs of piezoelectric tile are presented by performing experimental analyses. The experimental results showed that placing piezoelectric elements in a bending position leads to higher power generation in comparison with traditional flat positioning, which was approximately 78 times far superior. It is also revealed that by design of an electrical circuit, the tile can be advantageous for lighting in crowded sidewalks with required lighting time. The results of this paper can be beneficial in the design and fabrication of these tiles for different applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 27-42
Author(s):  
M. G. Verón ◽  
L. A. Soria ◽  
M. O. Prado

 Functionalized PVA microspheres are commonly used as drug carriers in the fields of pharmacy and medicine. With this aim, we obtained and test novel PVA-PVAc-AMPS sulfonated microspheres by free radical suspension polymerization of vinyl acetate (VAc) and 2-acrylamido-2-methyl-1-propanesulfonic sodium salt acid (AMPS), followed by saponification. The microspheres exhibited a porous core-shell structure with excellent sphericity, a mean size of 171 µm, and elasticity modulus comparable with commercial particles currently used in medical applications. Methylene blue (MB) which has shown similar adherence properties as the cytostatic drug doxorubicin was used as a model drug to study the drug loading/release characteristics of the sulfonated microspheres prepared in this work. 20.7 mg g-1 MB per gram of microspheres was the maximum adsorption capacity in two hours using UV-Vis absorption spectroscopy. The experimental data on adsorption were well described by the pseudo-second order kinetic model. The in vitro release profile of loaded MB microspheres showed rapid desorption in the first hour followed by slower MB release, reaching 8.6% elution at four hours. The diffusion process was found to be dominant in the MB desorption from the PVA-PVAc-AMPS microspheres.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-14
Author(s):  
Nuno M. Pereira ◽  
C. Mateos-Pedrero ◽  
A. Mendes

The production of useful chemicals by electroreducing CO2 it is a promising approach to reduce the levels of this greenhouse gas in the atmosphere. This is not a straightforward process due to the high stability of the CO2 molecule and low selectivity however, these barriers can be overcome by using an appropriate catalyst. This research focus on the effect of pre-treating the carbon supports before incorporating the catalyst on the electroreduction of CO2. We found that the electrochemical behaviour of the carbon supports is modified by the nature of the pre-treatment used. From the structure perspective, the results showed partial destruction of the carbon structure mainly after the oxidative treatments nevertheless, the introduction of defect sites in the carbon structure contributed to catalyst performance. This improvement was proved by the LSV data that showed the reduction of the current associated with the hydrogen reduction reaction.


2021 ◽  
Vol 10 (1) ◽  
pp. 43-51
Author(s):  
Osamu Kamiya ◽  
Kaito Suzuki ◽  
Etsushi Okuyama ◽  
Naoya Kojima ◽  
Jyunpei Nanao ◽  
...  

The dismantling of large concrete structures causes environmental pollution due to the dispersion of polluted micro-particles. The purpose of this study is to develop an environmentally friendly demolition method. Steam pressure cracking (SPC) is a method that can safely and quickly separate concrete because there is less vibration compared to the explosion method. To date, the authors have shown that the direction of cracking in a small sample can be controlled by an induction hole. The principle of control is that the elastic wave of compression stress generated from the SPC reaction changes to a tensile elastic wave at the induction hole, and a crack is initiated. In this study, it was shown that the direction of crack propagation can be controlled by using induction holes in large concrete structures that are 1m on each side. Further, in the SPC method, the large amount of concrete powder generated by the explosion method is not produced, and there is no risk of secondary contamination by fine concrete powder. It was also possible to separate small pieces from the end face of the large concrete by SPC and induction holes. The area over which the crack propagated depends on the energy generated from the SPC agent, and the relationship was linear. By applying an SPC agent to dismantling large concrete structures, we can achieve controlled cracking safely and quickly without any environmental pollution. 


2021 ◽  
Vol 10 (1) ◽  
pp. 15-26
Author(s):  
J.S Kwame ◽  
E. Yakushina ◽  
P. Blackwell

Localised plastic deformation evolution was examined in a near alpha Ti-3Al-2.5V alloy with indent defect and defect free surfaces using digital image correlation, an interrupted uniaxial tensile test and scanning electron microscopy. The main aim was to understand the role of the localised strain evolution at micro scale and the underlying deformation mechanisms that influence the global mechanical behaviour of the material. The microstructures captured at different stages of deformation were processed using a digital image correlation system, whose outputs were analysed through Matlab, to ascertain the localised strain evolution observed in each surface condition. This work found that the strains observed at the deformation bands along the indent defect edge, were significantly higher than those observed in the deformed β phase field. The deformation bands concentrating at the tip of the indent defect acted as a fertile site for early crack nucleation and propagation with a reduced localised fracture strain. For a defect free surface, the absence of defect zones acting as a high stress concentration site meant that strain aggregation was minimised and the α phase field was able to sufficiently accommodate the β phase deformation resulting in higher fracture strains.


2020 ◽  
Vol 9 (2) ◽  
pp. 107-119
Author(s):  
Rajeshree Patwari D ◽  
B Eraiah

 Na2O-BaO-Borate glasses were synthesized with silver nano-particles of varying silver concentrations by the method of melt-quenching. Their densities of the glasses and hence molar volumes were computed. The existence of the silver nano-particles was depicted by characteristic band in the absorption spectra of UV- Visible studies known as plasmon band. Further the matrix also showed a small amount of nanostructures of the host which imparts the nonlinear behaviour. They were further visualized by the Scanning and Transmission electron microscopy. Optical band gap and Urbach energies were found. The band gap values change exactly in the opposite manner of density with silver doping. The wide luminescence band in the visible region formed for the excitation of plasmon band may be utilized for the luminescence enhancement of luminescent material like rare earth ions. The very significant result perceived from this is that the glass as such with silver nano-particles showed broad emission in the, green & blue portions of electromagnetic spectrum in the close vicinity of white light with the variation of silver content which can be utilized for the enrichment of the emission of lanthanide ions in the visible section of electro-magnetic spectrum.


2020 ◽  
Vol 9 (2) ◽  
pp. 79-89
Author(s):  
S.H. Chen ◽  
S.T. Pua ◽  
Z.W. Zhong ◽  
X.C. Shan

Gravure printing is known to be cost competitive in manufacturing of printed electronic devices due to its capability to mass produce at lower costs. Current standard of gravure printed feature sizes is in a range of around 50 μm down to sub-10 μm, predominantly through small scale setups and specialized engraving. However, reliance on gravure cell design limits the scalability of printing over a large area due to the setup cost. In this study, ink viscoelastic behavior was modified to improve replication of gravure printed features over a large printing area of 300 mm web-width without a reduction in gravure cell dimension. Fine lines were printed using a high viscosity ink with a good replication of the nominal line width. Control over the printed features was performed through the variation of printing speed and the alteration of ink viscosity. The effects of ink viscosity and printing speed on the printed ink particle distribution and size were also examined. New methodologies of characterizing ink transfer were also developed to help understand the ink transfer processes: mass transfer and particle transfer. A deeper understanding of the thixotropic effect and shear recovery behavior of inks was achieved through simulations of shearing conditions.


Sign in / Sign up

Export Citation Format

Share Document