redundancy allocation problem
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 43)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 11 (22) ◽  
pp. 10765
Author(s):  
Hota Chia-Sheng Lin ◽  
Chia-Ling Huang ◽  
Wei-Chang Yeh

A novel constraints model of credibility-fuzzy for the reliability redundancy allocation problem (RRAP) is studied in this work. The RRAP that must simultaneously decide reliability and redundancy of components is an effective approach in improving the system reliability. In practice various systems, the uncertainty condition of components used in the systems, which few studies have noticed this state over the years, is a concrete fact due to several reasons such as production conditions, different batches of raw materials, time reasons, and climatic factors. Therefore, this study adopts the fuzzy theory and credibility theory to solve the components uncertainty in the constraints of RRAP including cost, weight, and volume. Moreover, the simplified swarm optimization (SSO) algorithm has been adopted to solve the fuzzy constraints of RRAP. The effectiveness and performance of SSO algorithm have been experimented by four famous benchmarks of RRAP.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tri Tjahjono ◽  
Dinesh Mavaluru ◽  
Dowlath Fathima ◽  
Akila Thiyagarajan ◽  
Wanich Suksatan ◽  
...  

The present study aimed to optimize the redundancy allocation problem based on sustainable maintenance. For this purpose, the goal is to design a complex system based on redundancy allocation by considering the weight and reliability criteria of the system and the maintenance and repair costs through the sustainability approach. In this regard, a mathematical model has been developed. This model minimizes system reliability and system weight simultaneously. There are also budget constraints on repair costs, environmental costs, purchase of spare parts, and energy risk costs. In order to optimize this model, a hybrid algorithm based on Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), and Simulated Annealing (SA) is proposed. Accordingly, 81 test problems are provided and optimized by the proposed algorithm. The obtained numerical results indicate that, with increasing failure time of each component, the system’s reliability increases and the weight of the whole system increases. Moreover, changing the Weibull distribution parameters directly affects the total amount of system reliability, but does not have a definite and accurate effect on the total weight of the system. Moreover, increasing the budget for maintenance leads to finding solutions with more reliability and less weight.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Neama Temraz

PurposeIn this paper, a new general system consisted of l subsystems connected in series is introduced. Each subsystem connected in K-out-of-(n + m): G mixed standby configuration.Design/methodology/approachThe lifetime of the system's units is assumed to be exponentially distributed and there is elapsed repair time with general distribution. The switch in each subsystem is assumed to be imperfect with the failure process follows an exponential distribution. A genetic algorithm is applied to the system to obtain the optimal solution of the system and solve the redundancy allocation problem.FindingsAnalysis of availability, reliability, mean time to failure and steady-state availability of the system is introduced. The measures of the system are discussed in special two cases when the elapsed repair time follows gamma and exponential distribution. An optimization problem with bi-objective functions is introduced to minimize the cost of the system and maximize the reliability function. A numeric application is introduced to show the implementation and effectiveness of the system and redundancy allocation problem.Originality/valueA new general K-out-of-(n + m): G mixed standby model with elapsed repair time and imperfect switching is introduced.


Sign in / Sign up

Export Citation Format

Share Document