potential nitrification rate
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 1)

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1674
Author(s):  
Lei Cui ◽  
Dongpo Li ◽  
Zhijie Wu ◽  
Yan Xue ◽  
Furong Xiao ◽  
...  

The application of nitrification inhibitors (NIs) is considered to be an efficient way to delay nitrification, but the effect of NIs combinations on soil nitrification and ammonia (NH3) volatilization are not clear in soils with different pH values. In this study, we explored the effect of nitrapyrin (CP) and its combinations with 3, 4-dimethylepyrazole phosphate (DMPP), dicyandiamide (DCD) on the transformation of nitrogen, potential nitrification rate (PNR), and ammonia (NH3) volatilization in a 120-day incubation experiment with three different pH values of black soil. Treatments included no fertilizer (Control), ammonium sulfate (AS), AS+CP (CP), AS+CP+DMPP (CP+DMPP), and AS+CP+DCD (CP+DCD). The application of NIs significantly decreased NO3−-N contents and potential nitrification rate (p < 0.05), while significantly increased NH4+-N contents (p < 0.05), especially CP+DCD and CP+DMPP were the most effective in the neutral and alkaline soils, respectively. In the acid soil, CP significantly increased total NH3 volatilization by 31%, while CP+DCD significantly reduced by 28% compared with AS. However, no significant difference was found in NH3 volatilization with and without NIs treatments (p > 0.05) in the neutral and alkaline soils. In conclusion, the combined nitrification inhibitors had the better efficiency in all three tested soils. CP+DCD and CP+DMPP are the most effective in inhibiting soil nitrification in the clay soils with higher pH value and lower organic matter, while CP+DCD had the potential in mitigating environment pollution by reducing N loss of NH3 volatilization in the loam soil with lower pH value and higher organic matter. It provided a theoretical basis for the application of high efficiency fertilizer in different soils. Further studies under field conditions are required to assess the effects of these nitrification inhibitors.


2019 ◽  
Vol 95 (9) ◽  
Author(s):  
Tong-tong Liu ◽  
Hong Yang

ABSTRACT Ammonium-oxidizing archaea (AOA) and bacteria (AOB) play crucial roles in ammonium oxidation in freshwater lake sediment. However, previous reports on the predominance of AOA and AOB in the surface sediment of Lake Taihu have been based on DNA levels, detecting the total abundance of microbiota (including inactive cells), and have resulted in numerous contradictory conclusions. Existing RNA-level studies detecting active transcription are very limited. The current study, using RNA-based real-time quantification and clone library analysis, demonstrated that the amoA gene abundance of active AOB was higher than that of active AOA, despite conflicting results at the DNA level. Further exploration revealed a significant positive correlation between the potential nitrification rate (PNR) and the abundance of AOA and AOB at the RNA level, with irregular or contradictory correlation found at the DNA level. Ultimately, using quantitative analysis of RNA levels, we show AOB to be the active dominant contributor to ammonium oxidation. Our investigations also indicated that AOB were more diverse in high-ammonium lake regions, with Nitrosomonas being the active and dominating cluster, but that AOA had an advantage in the low-ammonium lake regions.


Sign in / Sign up

Export Citation Format

Share Document