Abundance of ammonia-oxidizer and potential nitrification rate of quaternary red-clay paddy soil during rice growth

2010 ◽  
Vol 18 (5) ◽  
pp. 954-958 ◽  
Author(s):  
Ya-Na SONG ◽  
Zai-Jie CHEN ◽  
Zhi-Min LIN
2019 ◽  
Vol 95 (9) ◽  
Author(s):  
Tong-tong Liu ◽  
Hong Yang

ABSTRACT Ammonium-oxidizing archaea (AOA) and bacteria (AOB) play crucial roles in ammonium oxidation in freshwater lake sediment. However, previous reports on the predominance of AOA and AOB in the surface sediment of Lake Taihu have been based on DNA levels, detecting the total abundance of microbiota (including inactive cells), and have resulted in numerous contradictory conclusions. Existing RNA-level studies detecting active transcription are very limited. The current study, using RNA-based real-time quantification and clone library analysis, demonstrated that the amoA gene abundance of active AOB was higher than that of active AOA, despite conflicting results at the DNA level. Further exploration revealed a significant positive correlation between the potential nitrification rate (PNR) and the abundance of AOA and AOB at the RNA level, with irregular or contradictory correlation found at the DNA level. Ultimately, using quantitative analysis of RNA levels, we show AOB to be the active dominant contributor to ammonium oxidation. Our investigations also indicated that AOB were more diverse in high-ammonium lake regions, with Nitrosomonas being the active and dominating cluster, but that AOA had an advantage in the low-ammonium lake regions.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1674
Author(s):  
Lei Cui ◽  
Dongpo Li ◽  
Zhijie Wu ◽  
Yan Xue ◽  
Furong Xiao ◽  
...  

The application of nitrification inhibitors (NIs) is considered to be an efficient way to delay nitrification, but the effect of NIs combinations on soil nitrification and ammonia (NH3) volatilization are not clear in soils with different pH values. In this study, we explored the effect of nitrapyrin (CP) and its combinations with 3, 4-dimethylepyrazole phosphate (DMPP), dicyandiamide (DCD) on the transformation of nitrogen, potential nitrification rate (PNR), and ammonia (NH3) volatilization in a 120-day incubation experiment with three different pH values of black soil. Treatments included no fertilizer (Control), ammonium sulfate (AS), AS+CP (CP), AS+CP+DMPP (CP+DMPP), and AS+CP+DCD (CP+DCD). The application of NIs significantly decreased NO3−-N contents and potential nitrification rate (p < 0.05), while significantly increased NH4+-N contents (p < 0.05), especially CP+DCD and CP+DMPP were the most effective in the neutral and alkaline soils, respectively. In the acid soil, CP significantly increased total NH3 volatilization by 31%, while CP+DCD significantly reduced by 28% compared with AS. However, no significant difference was found in NH3 volatilization with and without NIs treatments (p > 0.05) in the neutral and alkaline soils. In conclusion, the combined nitrification inhibitors had the better efficiency in all three tested soils. CP+DCD and CP+DMPP are the most effective in inhibiting soil nitrification in the clay soils with higher pH value and lower organic matter, while CP+DCD had the potential in mitigating environment pollution by reducing N loss of NH3 volatilization in the loam soil with lower pH value and higher organic matter. It provided a theoretical basis for the application of high efficiency fertilizer in different soils. Further studies under field conditions are required to assess the effects of these nitrification inhibitors.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
A. E. Bernhard ◽  
J. Beltz ◽  
A. E. Giblin ◽  
B. J. Roberts

AbstractFew studies have focused on broad scale biogeographic patterns of ammonia oxidizers in coastal systems, yet understanding the processes that govern them is paramount to understanding the mechanisms that drive biodiversity, and ultimately impact ecosystem processes. Here we present a meta-analysis of 16 years of data of ammonia oxidizer abundance, diversity, and activity in New England (NE) salt marshes and 5 years of data from marshes in the Gulf of Mexico (GoM). Potential nitrification rates were more than 80x higher in GoM compared to NE marshes. However, nitrifier abundances varied between regions, with ammonia-oxidizing archaea (AOA) and comammox bacteria significantly greater in GoM, while ammonia-oxidizing bacteria (AOB) were more than 20x higher in NE than GoM. Total bacterial 16S rRNA genes were also significantly greater in GoM marshes. Correlation analyses of rates and abundance suggest that AOA and comammox are more important in GoM marshes, whereas AOB are more important in NE marshes. Furthermore, ratios of nitrifiers to total bacteria in NE were as much as 80x higher than in the GoM, suggesting differences in the relative importance of nitrifiers between these systems. Communities of AOA and AOB were also significantly different between the two regions, based on amoA sequences and DNA fingerprints (terminal restriction fragment length polymorphism). Differences in rates and abundances may be due to differences in salinity, temperature, and N loading between the regions, and suggest significantly different N cycling dynamics in GoM and NE marshes that are likely driven by strong environmental differences between the regions.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1489 ◽  
Author(s):  
Xiuyun Cao ◽  
Chunlei Song ◽  
Jian Xiao ◽  
Yiyong Zhou

Riparian buffers play an important role in intercepting nutrients entering lakes from non-point runoffs. In spite of its ecological significance, little is known regarding the underlying mechanisms of riparian buffers or their optimal width. In this study, we examined nutrient removal efficiency, including the quantity of nutrients and water quality, in the littoral zone of different types of riparian buffers in the watershed around eutrophic Lake Chaohu (China), and estimated the optimal width for different types of riparian buffers for effective nutrient removal. In general, a weak phosphorus (P) adsorption ability and nitrification-denitrification potential in soil resulted in a far greater riparian buffer demand than before in Lake Chaohu, which may be attributed to the soil degradation and simplification of cover vegetation. In detail, the width was at least 23 m (grass/forest) and 130 m (grass) for total P (TP) and total nitrogen (TN) to reach 50% removal efficiency, respectively, indicating a significantly greater demand for TN removal than that for TP. Additionally, wetland and grass/forest riparian buffers were more effective for TP removal, which was attributed to a high P sorption maximum (Qmax) and a low equilibrium P concentration (EPC0), respectively. The high potential nitrification rate (PNR) and potential denitrification rate (PDR) were responsible for the more effective TN removal efficiencies in grass riparian buffers. The nutrient removal efficiency of different types of riparian buffers was closely related with nutrient level in adjacent littoral zones around Lake Chaohu.


2018 ◽  
Vol 31 ◽  
pp. 03007
Author(s):  
Purwanto ◽  
Supriyadi ◽  
Aniek Hindrayani

Nitrification has the potential to decrease the efficiency of nitrogen utilization by plants. The use of nitrifying inhibitory chemicals proved to be effective in controlling nitrification, but also affects beneficial soil microbes. Another attempt to inhibit the more environmentally-friendly nitrification is to use plants that have allelochemical nitrification inhibiting compounds such as the grasses of Brachiaria. The aim of this research is to know the effectivity of B.mutica, B.decumbens, and B.humidicola as inhibitors of nitrification rate in soil. The experiment was carried out by pot experimental method based on nondestructive sampling and Complete Randomized Design, consisting of Brachiaria plant types and various doses of N fertilizer, 100 kg/ha, 150 kg/ha, 200 kg/ha. The results of this study show that 1) B.mutica, B.decumbens, and B.humidicola, highly significant to the soil potential nitrification, but the treatment of various doses of N fertilizer is not significant to the soil potential nitrification. 2) the highest soil potential nitrification in B.mutica rhizosphere was 5.160 mg NO2-/g of soil/5h, while the lowest soil potential nitrification in the rhizosphere of B.humidicola plant was 0.414 mg NO2-/g/5h. 3) From the four treatment of Brachiaria plants can be concluded B.humidicola plant more effective in inhibition of nitrification.


2011 ◽  
Vol 77 (13) ◽  
pp. 4618-4625 ◽  
Author(s):  
Huaiying Yao ◽  
Yangmei Gao ◽  
Graeme W. Nicol ◽  
Colin D. Campbell ◽  
James I. Prosser ◽  
...  

ABSTRACTAmmonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOBamoAgene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOAamoAsequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches.


2020 ◽  
Vol 8 ◽  
Author(s):  
Shahid Nadeem ◽  
Lars R. Bakken ◽  
Åsa Frostegård ◽  
John C. Gaby ◽  
Peter Dörsch

Liming acidic soils is often found to reduce their N2O emission due to lowered N2O/(N2O + N2) product ratio of denitrification. Some field experiments have shown the opposite effect, however, and the reason for this could be that liming stimulates nitrification-driven N2O production by enhancing nitrification rates, and by favoring ammonia oxidizing bacteria (AOB) over ammonia oxidizing archaea (AOA). AOB produce more N2O than AOA, and high nitrification rates induce transient/local hypoxia, thereby stimulating heterotrophic denitrification. To study these phenomena, we investigated nitrification and denitrification kinetics and the abundance of AOB and AOA in soils sampled from a field experiment 2–3 years after liming. The field trial compared traditional liming (carbonates) with powdered siliceous rocks. As expected, the N2O/(N2O + N2) product ratio of heterotrophic denitrification declined with increasing pH, and the potential nitrification rate and its N2O yield (YN2O: N2O-N/NO3–-N), as measured in fully oxic soil slurries, increased with pH, and both correlated strongly with the AOB/AOA gene abundance ratio. Soil microcosm experiments were monitored for nitrification, its O2-consumption and N2O emissions, as induced by ammonium fertilization. Here we observed a conspicuous dependency on water filled pore space (WFPS): at 60 and 70% WFPS, YN2O was 0.03-0.06% and 0.06–0.15%, respectively, increasing with increasing pH, as in the aerobic soil slurries. At 85% WFPS, however, YN2O was more than two orders of magnitude higher, and decreased with increasing pH. A plausible interpretation is that O2 consumption by fertilizer-induced nitrification cause hypoxia in wet soils, hence induce heterotrophic nitrification, whose YN2O decline with increasing pH. We conclude that while low emissions from nitrification in well-drained soils may be enhanced by liming, the spikes of high N2O emission induced by ammonium fertilization at high soil moisture may be reduced by liming, because the heterotrophic N2O reduction is enhanced by high pH.


2020 ◽  
Author(s):  
Yuxiang Zhao ◽  
Jiajie Hu ◽  
Weiling Yang ◽  
Jiaqi Wang ◽  
Zhongjun Jia ◽  
...  

Abstract Background The discovery of complete ammonia oxidizer (comammox) was groundbreaking. Comammox can use ammonia as the sole nitrogen source and turn it to nitrate. Moreover, genomic data indicated that comammox contained genes which can metabolize urea and nitrite. However, the feasibility of enriching comammox with urea and nitrite in long term has not been proved. This study enriched comammox’s culture by using nitrite in reactor SA and urea in reactor SB. Results The nitrification rate of reactor SB (1.29 mg N·g -1 biofilm · d -1 ) was higher than that in reactor SA (0.6 mg N · g -1 biofilm · d -1 ) at the 390 th day. Comammox outnumbered ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in both reactor SA (9.04 × 10 9 copies / g biofilm) and reactor SB (5.34×10 10 copies/ g biofilm). In reactor SA, comammox’s amoA accounted for 92% of the total amoA, which was higher than that in reactor SB (85%). However, the percentage of comammox (4%) in total bacteria was much lower than reactor SB (14%). The results of metagenomic sequencing showed that all the pathways of nitrogen cycle including nitrification, nitrogen fixation, denitrification, assimilation nitrate reduction, and dissimilation nitrate reduction can be detected in both reactor SA and reactor SB except the anammox pathway. The genes related to nitrite oxidation and nitrate reduction in reactor SA (TPM = 5099; TPM = 3329) was higher than that of in reactor SB (TPM = 4071; TPM = 2984), presumably due to the demand of turning nitrite to nitrate and turning nitrate to ammonia. While genes related to ammonia oxidation and urea metabolism in reactor SB (TPM = 3915; TPM = 3638) was higher than that in reactor SA (TPM = 2708; TPM = 3002). Conclusion Nitrite and urea can regulate the enrichment culture of comammox by converting its metabolic pathway. Using nitrite as sole nitrogen source can improve the proportion comammox’s amoA in total amoA while using urea as the sole nitrogen source may increase comammox’s proportion in total bacteria. These results can accelerate the enrichment of comammox and facilitate the promotion of comammox’s engineering operation.


Sign in / Sign up

Export Citation Format

Share Document