total abundance
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 78)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
pp. 321-344
Author(s):  
A. Gherib ◽  
A. Lazli ◽  
S. Naili ◽  
A. Boucheker ◽  
D. Ikhlef ◽  
...  

Between 2013 and 2016 we conducted an inventory and characterization of aquatic avifauna at Lake Tonga, a Ramsar site. We identified 61 species belonging to 17 families, dominated by Anatidae with 14 species. The inventoried species have different phenological status. Some are known for their regular wintering and some for their summer concentrations, while others are residents year round. Population analysis showed the presence of endangered species such as Oxyura leucocephala, Marmaronetta angustirostris and Aythya nyroca, that are protected by national and/or international laws. Bird counts showed monthly variations in total abundance and richness, peaking during winter. Peak numbers were recorded in February and January, reflecting gatherings to prepare for prenuptial migration. Analysis of diversity and equitability indices indicated that maximum values ​​were generally recorded during the pre– and post–nuptial passages (H’= 3.51 and E = 0.72). Our results reflect the importance of this wetland as a wintering site and nesting site for numerous waterbirds species.


Author(s):  
Svetlana Aleksandrovna Dyakova ◽  
Olga Borisovna Soprunova ◽  
Ecatherina Rafaelevna Galyautdinova ◽  
Anna Vitalievna Menkova ◽  
Dinara Gaidarovna Baubekova ◽  
...  

Microbiological monitoring of the Northern Caspian proved that for the research period in 2013-2018 the average annual value of the total number of bacteria (TBN) was 1.35 million cells/ml. The TBN maximum value (1.46 million cells/ml) was recorded in 2013, the minimum (1.19 million cells/ml) - in 2014. Concentration of saprotrophic bacteria in the waters of the Northern Caspian during the research period varied from 50.94 thousand CFU/ml in 2013 to 1.66 thousand CFU/ml in 2014. The concentration of saprotrophic bacteria remained practically unchanged within 2014-2018. The values of the ratio of the total abundance of microorganisms and saprotrophic bacteria show the eutrophication of the waters of the North Caspian in 2013 and in 2016, in other periods the water quality corresponded to the readings of an oligotrophic reservoir. The maximum number of oil-oxidizing bacteria (OOB) (8.28 thousand CFU/ml) in the waters of the Northern Caspian was recorded in 2013, the minimum (0.21 thousand CFU/ml) - in 2014. Starting from 2015 there was recorded an increasing number of OOBs and its stabilization until the end of the research period. The ratio of NOB and saprotrophs in water varied from 16.47 to 52.47%. Analysis of microbiological and hydrological-hydrochemical indicators revealed positive correlations of TBN and annual runoff (r = + 0.77), TBN and the content of mineral forms of nitrogen (r = + 0.60), the number of saprotrophic bacteria and nitrogen (r = + 0.83), the amount of NOB and mineral nitrogen and silicon (r = + 0.81). In the long-term aspect, an improvement in the microbiological situation was recorded against the background of a growing total number of bacterioplankton under a simultaneous decrease in the number of saprotrophic and oil-oxidizing bacteria.


Author(s):  
Esme Ashe-Jepson ◽  
Andrew J. Bladon ◽  
Greg Herbert ◽  
Gwen E. Hitchcock ◽  
Richard Knock ◽  
...  

Abstract Abstract Climate change affects butterflies in many ways, influencing the timing of emergence and reproduction, habitat preferences, and behaviour. The small blue (Cupido minimus Fuessley, 1775) is highly specialised in its host plant requirements, feeding on the seeds of a single species, kidney vetch (Anthyllis vulneraria), on which the larvae occur singly to avoid cannibalism. The butterfly is likely to be vulnerable to temperature-related changes in oviposition, adult emergence, and host plant flowering times, and is, therefore, a good model species for investigating climate change-related impacts. Using 26 years of data from the national UK Butterfly Monitoring Scheme (1993–2019) from one nature reserve, and 4 years of targeted egg searches (2006, 2007, 2008, 2020) from three reserves in Bedfordshire, UK, we investigated the effects of local temperature on small blue emergence date and total abundance, whether flowerhead or local environmental characteristics predicted small blue oviposition behaviour, and whether this changed between years. Small blue adults emerged on earlier dates over time, and earlier in years with higher maximum February temperatures. Total adult abundance was not predicted by monthly temperatures or total abundance in the previous year. Oviposition behaviour was broadly consistent across years, with egg presence more likely and egg abundance higher on kidney vetch flowerheads that were taller than the surrounding vegetation, and surrounded by taller vegetation and fewer mature flowerheads. The effect of solar radiation differed between years, with a negative effect on the probability of egg presence in 2007 and 2008, but a positive effect in 2020. Egg abundance per flowerhead was highly variable between years, with 2006 having four times more eggs per flowerhead than other years. This was likely driven by high adult abundance in 2006, which could have increased competition for flowerheads. Implications for insect conservation Our results indicate that management for greater availability of taller kidney vetch amongst taller vegetation would encourage small blue oviposition on a greater number of flowerheads, providing a possible means of reducing competition and increasing larval survival, and that this would be effective despite variation in adult abundance between years. The high level of competition we observed in the year with the highest adult abundance indicates that higher numbers of host plants should be encouraged to reduce competition and larval cannibalism in peak years, increasing the likelihood of long-term population persistence and growth.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shujin Lin ◽  
Hui Zhang ◽  
Xueke Wang ◽  
Ting Lin ◽  
Zihan Chen ◽  
...  

Lipopolysaccharide (LPS) is a potent endotoxin on the outer membrane of gram-negative bacteria. Heptosyltransferase I (HpeI) takes part in the synthesis of LPS. In this study, we first collected the protein sequences of HpeI homologs from the human microbiome. The collected HpeI sequences was classified based on sequence similarity, and seven clusters of HpeI were obtained. Among these clusters, proteins from Cluster 3 were abundant in the human mouth, while Clusters 1, 6, and 7 were abundant in the human gut. In addition, proteins from Cluster 1 were mainly from the order of Enterobacterales, while Cluster 6 and 7 were from Burkholderiales. The correlation analysis indicated that the total abundance of HpeIs was increased in patients with cardiovascular disease and liver cirrhosis, and HpeI in Cluster 1 contributed to this increase. These data suggest that HpeI homologs in Cluster 1 can be recognized as biomarkers for cardiovascular disease and liver cirrhosis, and that reducing the bacterial load in Cluster 1 may contribute to disease therapy.


2021 ◽  
Author(s):  
◽  
Claire Andrea Storkey

<p>The Antarctic and Southern Ocean is an area that was greatly affected by climatic changes during the Middle Eocene to Early Oligocene (E/O). This study aims to document climate-induced changes of the marine palynomorphs (mostly dinoflagellate cysts) by developing a Circum-Antarctic biozonation, and establishing the distribution and effects of cooling on the palynomorph assemblages and the palaeoenvironment. Samples were obtained from four sites by the Ocean Drilling Program (ODP) and Deep Sea Drilling Project (DSDP) and the palynological content was analyzed. These sites were selected as they may record effects of circulation changes and cooling trends, reflecting climate changes. ODP site 696B, was inner neritic and located in the South Orkney microcontinent, Weddell Sea. The other three sites were pelagic with ODP 699A located on the Northeast Georgia Rise, Falklands, ODP 748B located in the Western part of the Raggart Basin, Kerguelen Plateau and DSDP 277 located in Cathedral Depression on the Southern Campbell Plateau. From this analysis a comprehensive record of the local climatic transitions was ascertained, utilising assemblages of fossil organic-walled dinoflagellate cysts (dinocysts), acritarchs, prasinophyte algae, microforaminiferal linings, scoledonts and terrestrial material. The establishment of a standard nannofossil biostratigraphy provided a temporal framework of the marine palynomorphs in each site. Key dinocyst datums recognised as first or last occurrences that correlated reliably between sites, were compared with the nannofossil zones of each site. The purpose was to provide a Middle Eocene/Early Oligocene dinocyst biostratigraphy that temporally constrains the assemblages. Six primary datums and two secondary datums resulted, which lead to the recognition of four biozones and established a new biozonation in the Southern Ocean. The zones identified various dinocyst events, giving an indication of their probable palaeoenvironments. The Circum-Antarctic distribution pattern of palynomorph assemblages was documented in each site as a total abundance of grains per gram. The ranges and composition of palynomorph assemblages of each site were displayed as a percentage of total abundance. To document any cooling effects the dinocysts were separated into Gonyaulacoid or Peridinioid assemblages to best illustrate their preferred palaeoenvironment. Key findings showed that the pelagic and inner neritic sites differed greatly. Site 696B was the most climatically stable site and dominated by Peridinioid dinocysts which are predominantly heterotrophic. They are most common in an inner neritic palaeoenvironment, but are also present in nutrient upwellings and eutrophic surface waters with lower sea surface temperatures. Terrestrial material dominates all marine palynomorphs in this site which was shallow and warm with few changes up to the E/O boundary ~33.7 Ma, but became more variable in the Early Oligocene. In comparison, the pelagic sites (699, 748B, 277) were unstable, with missing or condensed sediments and no palynomorphs present at differing times. They were mostly dominated by Gonyaulacoid dinocysts, which are autotrophs and generally located in outer neritic to open ocean palaeoenvironments. The non dinocysts of Prasinophyte algae and Leiosphaeridia palynomorphs appeared in higher abundances in the pelagic sites than in the inner neritic sites. Specific dinocyst markers identified temperature changes within the pelagic sites, subsequently highlighting the climatic changes that occurred during the Middle Eocene/Early Oligocene. From ~46 Ma the pelagic sites recorded conditions that were oceanic and cooler. Between ~44 - ~41.5 Ma, a warming in site 748B indicated enhanced stratification and elevated nutrient availability. This was not the case in site 696B and may be due to warm temperatures already present. From ~41.4 Ma the pelagic sites showed that the palaeoenvironment continued to cool, indicated by the presence of Leiosphaeridia and Prasinophyte algae. The palaeoenvironment was oceanic with upwelling and offshore sea surface productivity, illustrated by the Gonyaulacoid and Peridinioid dinocysts present. During the Late Eocene from ~37 Ma a transitional and changeable palaeoenvironment was shown by the high numbers of Operculodinium spp present in sites 696B and 277. From ~33.7 Ma (E/O boundary) in the pelagic sites, most Peridinioid dinocysts had disappeared and very few Gonyaulacoid dinocysts were present. In contrast the inner neritic site (696B) Peridinioid dinocysts were still dominant, and a more gradual disappearance of all the marine palynomorphs was evident.</p>


2021 ◽  
Author(s):  
◽  
Claire Andrea Storkey

<p>The Antarctic and Southern Ocean is an area that was greatly affected by climatic changes during the Middle Eocene to Early Oligocene (E/O). This study aims to document climate-induced changes of the marine palynomorphs (mostly dinoflagellate cysts) by developing a Circum-Antarctic biozonation, and establishing the distribution and effects of cooling on the palynomorph assemblages and the palaeoenvironment. Samples were obtained from four sites by the Ocean Drilling Program (ODP) and Deep Sea Drilling Project (DSDP) and the palynological content was analyzed. These sites were selected as they may record effects of circulation changes and cooling trends, reflecting climate changes. ODP site 696B, was inner neritic and located in the South Orkney microcontinent, Weddell Sea. The other three sites were pelagic with ODP 699A located on the Northeast Georgia Rise, Falklands, ODP 748B located in the Western part of the Raggart Basin, Kerguelen Plateau and DSDP 277 located in Cathedral Depression on the Southern Campbell Plateau. From this analysis a comprehensive record of the local climatic transitions was ascertained, utilising assemblages of fossil organic-walled dinoflagellate cysts (dinocysts), acritarchs, prasinophyte algae, microforaminiferal linings, scoledonts and terrestrial material. The establishment of a standard nannofossil biostratigraphy provided a temporal framework of the marine palynomorphs in each site. Key dinocyst datums recognised as first or last occurrences that correlated reliably between sites, were compared with the nannofossil zones of each site. The purpose was to provide a Middle Eocene/Early Oligocene dinocyst biostratigraphy that temporally constrains the assemblages. Six primary datums and two secondary datums resulted, which lead to the recognition of four biozones and established a new biozonation in the Southern Ocean. The zones identified various dinocyst events, giving an indication of their probable palaeoenvironments. The Circum-Antarctic distribution pattern of palynomorph assemblages was documented in each site as a total abundance of grains per gram. The ranges and composition of palynomorph assemblages of each site were displayed as a percentage of total abundance. To document any cooling effects the dinocysts were separated into Gonyaulacoid or Peridinioid assemblages to best illustrate their preferred palaeoenvironment. Key findings showed that the pelagic and inner neritic sites differed greatly. Site 696B was the most climatically stable site and dominated by Peridinioid dinocysts which are predominantly heterotrophic. They are most common in an inner neritic palaeoenvironment, but are also present in nutrient upwellings and eutrophic surface waters with lower sea surface temperatures. Terrestrial material dominates all marine palynomorphs in this site which was shallow and warm with few changes up to the E/O boundary ~33.7 Ma, but became more variable in the Early Oligocene. In comparison, the pelagic sites (699, 748B, 277) were unstable, with missing or condensed sediments and no palynomorphs present at differing times. They were mostly dominated by Gonyaulacoid dinocysts, which are autotrophs and generally located in outer neritic to open ocean palaeoenvironments. The non dinocysts of Prasinophyte algae and Leiosphaeridia palynomorphs appeared in higher abundances in the pelagic sites than in the inner neritic sites. Specific dinocyst markers identified temperature changes within the pelagic sites, subsequently highlighting the climatic changes that occurred during the Middle Eocene/Early Oligocene. From ~46 Ma the pelagic sites recorded conditions that were oceanic and cooler. Between ~44 - ~41.5 Ma, a warming in site 748B indicated enhanced stratification and elevated nutrient availability. This was not the case in site 696B and may be due to warm temperatures already present. From ~41.4 Ma the pelagic sites showed that the palaeoenvironment continued to cool, indicated by the presence of Leiosphaeridia and Prasinophyte algae. The palaeoenvironment was oceanic with upwelling and offshore sea surface productivity, illustrated by the Gonyaulacoid and Peridinioid dinocysts present. During the Late Eocene from ~37 Ma a transitional and changeable palaeoenvironment was shown by the high numbers of Operculodinium spp present in sites 696B and 277. From ~33.7 Ma (E/O boundary) in the pelagic sites, most Peridinioid dinocysts had disappeared and very few Gonyaulacoid dinocysts were present. In contrast the inner neritic site (696B) Peridinioid dinocysts were still dominant, and a more gradual disappearance of all the marine palynomorphs was evident.</p>


2021 ◽  
Vol 19 (3) ◽  
pp. 281-298
Author(s):  
Sergei F. Kliver

Conservation biology aims to maintain biological diversity and to defend species from extinction. The number of endangered species is constantly increasing from year to year, reflecting both a deteriorating situation and an increasing number of studied species. In order to obtain a reliable assessment of the status and conservation planning of threatened species, not only an estimate of current total abundance, but also data on population structure, demographic history, and genetic diversity are needed. The development of new approaches and lower costs of sequencing have made it possible to solve these problems at a level previously inaccessible and have led to the formation of conservation genomics. This review discusses the opportunities and prospects offered by the use of whole genome sequencing in conservation biology, features of sample gathering for sequencing, as well as some features of planning whole genome studies. In addition, emphasis is placed on the importance of the formation of open biobanks of samples and cell cultures at the national level.


2021 ◽  
Vol 7 (2) ◽  
pp. 827-830
Author(s):  
Andrea Sowislok ◽  
Thomas Weischer ◽  
Herbert P. Jennissen

Abstract Protein adsorption is the first fundamental interaction between the human body and a foreign surface. The sum of all proteins in this adherent proteinaceous layer comprises the implant proteome. The in situdental implant proteome (implantome) was eluted from four implants of two wettabilities after a 2-min dipping in the humor operationis of maxillar tooth sockets. A mean number of 2056 different polypeptides per implant were identified according to the Xcorr method (Xcorr score ≥ 1.5, n ≥ 2 peptides). In the top 12 proteins comprising ca. 47% of the total abundance, cell-free hemoglobin (26.7%) was the most abundant, followed by fibrinogen (6.4%) and serum albumin (1.8%) with additional 1,800 lower abundance polypeptides, which contained ca. 34 salivary and a similar number of autoimmunogenic polypeptides. Selective enrichment of cell-free hemoglobin on the implant vs. albumin was estimated to 270 fold


2021 ◽  
Vol 193 (10) ◽  
Author(s):  
Melinda Pálinkás ◽  
Levente Hufnagel

AbstractWe studied the patterns of pre-collapse communities, the small-scale and the large-scale signals of collapses, and the environmental events before the collapses using four paleoecological and one modern data series. We applied and evaluated eight indicators in our analysis: the relative abundance of species, hierarchical cluster analysis, principal component analysis, total abundance, species richness, standard deviation (without a rolling window), first-order autoregression, and the relative abundance of the dominant species. We investigated the signals at the probable collapse triggering unusual environmental events and at the collapse zone boundaries, respectively. We also distinguished between pulse and step environmental events to see what signals the indicators give at these two different types of events. Our results show that first-order autoregression is not a good environmental event indicator, but it can forecast or indicate the collapse zones in climate change. The rest of the indicators are more sensitive to the pulse events than to the step events. Step events during climate change might have an essential role in initiating collapses. These events probably push the communities with low resilience beyond a critical threshold, so it is crucial to detect them. Before collapses, the total abundance and the species richness increase, the relative abundance of the species decreases. The hierarchical cluster analysis and the relative abundance of species together designate the collapse zone boundaries. We suggest that small-scale signals should be involved in analyses because they are often earlier than large-scale signals.


2021 ◽  
pp. 287-306
Author(s):  
A.Yu. Lein ◽  
◽  
A.S. Savvichev ◽  

Biogeochemical processes involving microorganisms play an important role in marine sedimentogenesis. The study of biogeochemical processes in the Barents Sea was carried out from 1997 with interruptions until 2019. Using a complex of geological-geochemical, microbiological, radioisotope and stable isotope methods, it was possible to obtain a quantitative estimate of the total abundance and biomass of microorganisms, rates of biogeochemical processes, methane content and organic matter suspended. In the course of work in four expeditions, it was found that in the surface (0–10 m) water column south of 74° N the magnitude of the total abundance and the biomass of microorganisms increased by 2019 by about 5 times compared to 1998. To the north, in colder waters, the total abundance and the biomass of organisms were lower than in the southern region of the sea. The methane concentration in the surface layer of the water column at the border with the atmosphere did not change much for 20 years (1976–1997) and increased noticeably from 1997 to 2017, from 3.3 to 15.8 nM. The increase in FFM, the biomass of organisms and the concentration of methane in the water column is associated with the melting of glaciers, with the release of organic matter of continental origin released from ice into the water. The results of the work indicate changes in the ecosystem of the Barents Sea.


Sign in / Sign up

Export Citation Format

Share Document