spatial extremes
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 20)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 49 (5) ◽  
Author(s):  
Michaël Lalancette ◽  
Sebastian Engelke ◽  
Stanislav Volgushev

2020 ◽  
Author(s):  
Miranda J. Fix ◽  
Daniel S. Cooley ◽  
Emeric Thibaud

2020 ◽  
Vol 24 (8) ◽  
pp. 3967-3982 ◽  
Author(s):  
Manuela I. Brunner ◽  
Eric Gilleland

Abstract. Stochastically generated streamflow time series are used for various water management and hazard estimation applications. They provide realizations of plausible but as yet unobserved streamflow time series with the same temporal and distributional characteristics as the observed data. However, the representation of non-stationarities and spatial dependence among sites remains a challenge in stochastic modeling. We investigate whether the use of frequency-domain instead of time-domain models allows for the joint simulation of realistic, continuous streamflow time series at daily resolution and spatial extremes at multiple sites. To do so, we propose the stochastic simulation approach called Phase Randomization Simulation using wavelets (PRSim.wave) which combines an empirical spatio-temporal model based on the wavelet transform and phase randomization with the flexible four-parameter kappa distribution. The approach consists of five steps: (1) derivation of random phases, (2) fitting of the kappa distribution, (3) wavelet transform, (4) inverse wavelet transform, and (5) transformation to kappa distribution. We apply and evaluate PRSim.wave on a large set of 671 catchments in the contiguous United States. We show that this approach allows for the generation of realistic time series at multiple sites exhibiting short- and long-range dependence, non-stationarities, and unobserved extreme events. Our evaluation results strongly suggest that the flexible, continuous simulation approach is potentially valuable for a diverse range of water management applications where the reproduction of spatial dependencies is of interest. Examples include the development of regional water management plans, the estimation of regional flood or drought risk, or the estimation of regional hydropower potential. Highlights. Stochastic simulation of continuous streamflow time series using an empirical, wavelet-based, spatio-temporal model in combination with the parametric kappa distribution. Generation of stochastic time series at multiple sites showing temporal short- and long-range dependence, non-stationarities, and spatial dependence in extreme events. Implementation of PRSim.wave in R package PRSim: Stochastic Simulation of Streamflow Time Series using Phase Randomization.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 354
Author(s):  
Stephen Jewson

Floods and droughts are driven, in part, by spatial patterns of extreme rainfall. Heat waves are driven by spatial patterns of extreme temperature. It is therefore of interest to design statistical methodologies that allow the rapid identification of likely patterns of extreme rain or temperature from observed historical data. The standard work-horse for the rapid identification of patterns of climate variability in historical data is Principal Component Analysis (PCA) and its variants. But PCA optimizes for variance not spatial extremes, and so there is no particular reason why the first PCA spatial pattern should identify, or even approximate, the types of patterns that may drive floods, droughts or heatwaves, even if the linear assumptions underlying PCA are correct. We present an alternative pattern identification algorithm that makes the same linear assumptions as PCA, but which can be used to explicitly optimize for spatial extremes. We call the method Directional Component Analysis (DCA), since it involves introducing a preferred direction, or metric, such as “sum of all points in the spatial field”. We compare the first PCA and DCA spatial patterns for U.S. and China winter and summer rainfall anomalies, using the sum metric for the definition of DCA in order to focus on total rainfall anomaly over the domain. In three out of four of the examples the first DCA spatial pattern is more uniform over a wide area than the first PCA spatial pattern and as a result is more obviously relevant to large-scale flooding or drought. Also, in all cases the definitions of PCA and DCA result in the first PCA spatial pattern having the larger explained variance of the two patterns, while the first DCA spatial pattern, when scaled appropriately, has a higher likelihood and greater total rainfall anomaly, and indeed is the pattern with the highest total rainfall anomaly for a given likelihood. The first DCA spatial pattern is arguably the best answer to the question: what single spatial pattern is most likely to drive large total rainfall anomalies in the future? It is also simpler to calculate than PCA. In combination PCA and DCA patterns yield more insight into rainfall variability and extremes than either pattern on its own.


Sign in / Sign up

Export Citation Format

Share Document