lacustrine sedimentation
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. SP520-2021-66
Author(s):  
G. Martin-Merino ◽  
M. Roverato ◽  
R. Almeida

AbstractIn this work, we present the description of the sedimentary fill of a well-exposed lacustrine succession in the Ecuadorian Andes. The Guayllabamba basin is an intermontane basin located in the Andean range of Ecuador, and part of its sedimentary history is represented by a volcanically-influenced ∼100 m thick lacustrine unit of the Pleistocene age. We create a stratigraphic cross-section from the eastern to western lake margins and identify nineteen facies that were used to carry out a paleoenvironmental reconstruction. The Guayllabamba paleolake was developed in a tectonic depression surrounded by volcanoes and it was filled by sediments derived from the erosion of the volcanic edifices, the reworking of unconsolidated pyroclastic deposits, and deposition of pyroclastic currents into the lake. The lake shows a deepening trend, passing from shallow deltaic sedimentation to varved diatomites with turbidites. Abundant ash-fall beds, monolithological pumiceous deltaic sequences, and pumice-dominated thick ignimbrites show the impacts of volcanism on lacustrine sedimentation within this basin. Soft-sediment deformation and gravity flow deposits are common due to the intrabasinal tectonic activity and to the intrusion of a lava body. Aulacoseira-rich diatomites dominated the background lake sedimentation. The outcrops of the Guayllabamba basin are outstanding examples of the interaction between volcaniclastic and lacustrine sedimentation.


2021 ◽  
Vol 35 (10) ◽  
Author(s):  
Erik Schiefer ◽  
Jason Geck ◽  
Johnse S. Ostman ◽  
Nicholas P. McKay ◽  
Nore Praet ◽  
...  

Geosphere ◽  
2021 ◽  
Author(s):  
Gilles Y. Brocard ◽  
Maud J.M. Meijers ◽  
Michael A. Cosca ◽  
Tristan Salles ◽  
Jane Willenbring ◽  
...  

Continental sedimentation was widespread across the Central Anatolian Plateau in Miocene–Pliocene time, during the early stages of plateau uplift. Today, however, most sediment produced on the plateau is dispersed by a well-integrated drainage and released into surrounding marine depocenters. Residual long-term (106–107 yr) sediment storage on the plateau is now restricted to a few closed catchments. Lacustrine sedimentation was widespread in the Miocene–Pliocene depocenters. Today, it is also restricted to the residual closed catchments. The present-day association of closed catchments, long-term sediment storage, and lacustrine sedimentation suggests that the Miocene–Pliocene sedimentation also occurred in closed catchments. The termination of sedimentation across the plateau would therefore mark the opening of these closed catchments, their integration, and the formation of the present-day drainage. By combining newly dated volcanic markers with previously dated sedimentary sequences, we show that this drainage integration occurred remarkably rapidly, within 1.5 m.y., at the turn of the Pliocene. The evolution of stream incision documented by these markers and newly obtained 10Be erosion rates allow us to discriminate the respective con­tributions of three potential processes to drainage integration, namely, the capture of closed catch­ments by rivers draining the outer slopes of the plateau, the overflow of closed lakes, and the avul­sion of closed catchments. Along the southern plateau margin, rivers draining the southern slope of the Central Anatolian Plateau expanded into the plateau interior; however, only a small amount of drainage integration was achieved by this process. Instead, avulsion and/or overflow between closed catchments achieved most of the integration, and these top-down processes left a distinctive sedi­mentary signal in the form of terminal lacustrine limestone sequences. In the absence of substantial regional climate wetting during the early Pliocene, we propose that two major tectonic events triggered drainage inte­gration, separately or in tandem: the uplift of the Central Anatolian Plateau and the tectonic com­pletion of the Anatolian microplate. Higher surface uplift of the eastern Central Anatolian Plateau relative to the western Central Anatolian Plateau promoted more positive water balances in the eastern catchments, higher water discharge, and larger sediment fluxes. Overflow/avulsion in some of the eastern catchments triggered a chain of avulsions and/or overflows, sparking sweeping integration across the plateau. Around 5 Ma, the inception of the full escape of the Anatolian microplate led to the disruption of the plateau surface by normal and strike-slip faults. Fault scarps partitioned large catchments fed by widely averaged sediment and water influxes into smaller catchments with more contrasted water balances and sediment fluxes. The evolution of the Central Anatolian Plateau shows that top-down processes of integration can outcompete erosion of outer plateau slopes to reintegrate plateau interior drainages, and this is overlooked in current models, in which drainage evolution is dominated by bottom-up integration. Top-down integration has the advantage that it can be driven by more subtle changes in climatic and tectonic boundary conditions than bottom-up integration.


Author(s):  
A. Fedotov ◽  

Bottom sediments of some small modern lakes located at the Khamar-Daban and Kodar Ridge (East Siberia) were investigated by 14C dating, chemical and biological methods. Graphitization and AMS-analysis were carried out in the laboratory AMS Golden Valley using AMS constructed at Budker Institute of Nuclear Physics (Novosibirsk, Russia). Depth-age model and paleo-proxies evidenced that studied lakes began form since ca.12 ka cal. BP, and there were hiatuses in lacustrine sedimentation at ca. 18–22 and 5 ka cal. BP.


2019 ◽  
Vol 5 (2) ◽  
pp. 362-387
Author(s):  
Alexis Nutz ◽  
Ola Kwiecien ◽  
Sebastian F. M. Breitenbach ◽  
Yanjun Cai ◽  
Giovanna Della Porta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document