larval parasitoids
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 20)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Paul K. Abram ◽  
Michelle T. Franklin ◽  
Tracy Hueppelsheuser ◽  
Juli Carrillo ◽  
Emily Grove ◽  
...  

AbstractTwo species of larval parasitoids of the globally invasive fruit pest, Drosophila suzukii (Diptera: Drosophilidae), Leptopilina japonica and Ganaspis brasiliensis (both Hymenoptera: Figitidae), were detected in British Columbia, Canada in 2019. Both are presumed to have been unintentionally introduced from Asia, however; the extent of their establishment across different habitats with diverse host plants used by D. suzukii was unclear. In addition, there was no knowledge of the temporal dynamics of parasitism of D. suzukii by these two parasitoids. We repeatedly sampled the fruits of known host plants of D. suzukii over the entire 2020 growing season in British Columbia. We documented the presence of L. japonica and G. brasiliensis and estimated the apparent percentage of D. suzukii parasitized. Across a large region of southwestern British Columbia, both L. japonica and G. brasiliensis were found to be very common across a variety of mostly unmanaged habitats over the entire course of the season (May-October) in the fruits of most host plants known to host D. suzukii larvae. The two parasitoids were responsible for more than 98% of D. suzukii larval parasitism and usually co-existed even within a host species. Parasitism of D. suzukii was variable among hosts plants and sites (0-66% percent parasitism) and appeared to be time-structured. Our study demonstrates that the close association between the two larval parasitoids and D. suzukii that exists in Asia has evidently been reconstructed in North America, resulting in the highest parasitism levels of D. suzukii yet recorded outside of its area of origin.


Author(s):  
G. Kinyanjui ◽  
F. M. Khamis ◽  
F. L. O. Ombura ◽  
E. U. Kenya ◽  
S. Ekesi ◽  
...  

Abstract Tuta absoluta (Meyrick) has become a serious menace to sustainable production of tomato in Kenya. A survey was conducted between April 2015 and June 2016 to determine its distribution, abundance, infestation, and damage levels on tomato, and associated natural enemies. Trap counts of T. absoluta moths were recorded in all surveyed 29 counties, which indicated its nationwide distribution irrespective of altitude. Tuta absoluta was present in both open fields and greenhouses. The highest moth/trap/day was 115.38 ± 15.90. Highest leaf infestation was 92.22% and the highest number of mines and larvae per leaf were 3.71 ± 0.28 and 2.16 ± 0.45, respectively. Trap captures in terms of moth/trap/day were linearly and positively related to leaf infestations in open fields (R2 = 0.81) and greenhouses (R2 = 0.61). Highest fruits’ infestation and damage were 60.00 and 59.61%, respectively, while the highest number of mines per fruit was 7.50 ± 0.50. Nesidiocoris tenuis (Reuter) and Macrolophus pygmaeus (Rambur) were identified as predators of T. absoluta larvae. Nine species of larval parasitoids were recovered from infested foliage, with a combined parasitism of 7.26 ± 0.65%. Hockeria species was the most dominant (31.25%) and accounted for 12.88 ± 1.47% parasitism. Two species of larval parasitoids, Hockeria and Necremnus were obtained from sentinel plants with an average parasitism of 1.13 ± 0.25. The overall abundance and parasitism rates of recovered natural enemies were low to effectively control the field populations of T. absoluta. These findings form the basis of researching and developing effective and sustainable management strategies for the pest.


Author(s):  
Kent M. Daane ◽  
Xingeng Wang ◽  
Brian N. Hogg ◽  
Antonio Biondi

AbstractAsobara japonica (Hymenoptera: Braconidae), Ganaspis brasiliensis and Leptopilina japonica (Hymenoptera: Figitidae) are Asian larval parasitoids of spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae). This study evaluated these parasitoids’ capacity to attack and develop from 24 non-target drosophilid species. Results showed that all three parasitoids were able to parasitize host larvae of multiple non-target species in artificial diet; A. japonica developed from 19 tested host species, regardless of the phylogenetic position of the host species, L. japonica developed from 11 tested species; and G. brasiliensis developed from only four of the exposed species. Success rate of parasitism (i.e., the probability that an adult wasp successfully emerged from a parasitized host) by the two figitid parasitoids was low in hosts other than the three species in the melanogaster group (D. melanogaster, D. simulans, and D. suzukii). The failure of the figitids to develop in most of the tested host species appears to correspond with more frequent encapsulation of the parasitoids by the hosts. The results indicate that G. brasiliensis is the most host specific to D. suzukii, L. japonica attacks mainly species in the melanogaster group and A. japonica is a generalist, at least physiologically. Overall, the developmental time of the parasitoids increased with the host’s developmental time. The body size of female A. japonica (as a model species) was positively related to host size, and mature egg load of female wasps increased with female body size. We discuss the use of these parasitoids for classical biological control of D. suzukii.


BioControl ◽  
2020 ◽  
Author(s):  
Bonoukpoè Mawuko Sokame ◽  
Julius Obonyo ◽  
Enock Mwangangi Sammy ◽  
Samira A. Mohamed ◽  
Sevgan Subramanian ◽  
...  

BioControl ◽  
2020 ◽  
Author(s):  
Bonoukpoè Mawuko Sokame ◽  
Julius Obonyo ◽  
Enock Mwangangi Sammy ◽  
Samira A. Mohamed ◽  
Sevgan Subramanian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document