floating elastic plate
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 0)





2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ping Wang ◽  
Yongyan Wang ◽  
Xintai Huo

Nonlinear hydroelastic interaction among a floating elastic plate, a train of deepwater waves, and a current which decays exponentially with depth is studied analytically. We introduce a stream function to obtain the governing equation with the dynamic boundary condition expressing a balance among the hydrodynamic, the shear currents, elastic, and inertial forces. We use the Dubreil-Jacotin transformation to reformulate the unknown free surface as a fixed location in the calculations. The convergent analytical series solutions for the floating plate deflection are obtained with the aid of the homotopy analysis method (HAM). The effects of the shear current are discussed in detail. It is found that the phase speed decreases with the increase of the vorticity parameter in the opposing current, while the phase speed increases with the increase of the vorticity parameter in the aiding current. Larger vorticity tends to increase the horizontal velocity. In the opposing current, the horizontal velocity under the wave crest delays more quickly as the depth increases than that of waves under the wave trough, while in the aiding current case, there is the opposite effect. Furthermore, the larger vorticity can sharpen the hydroelastic wave crest and smooth the trough on an opposing current, while it produces an opposite effect on an aiding current.



Author(s):  
K. M. Praveen ◽  
D. Karmakar ◽  
C. Guedes Soares

In the present study, the wave interaction with the very large floating structures (VLFSs) is analyzed considering the small amplitude wave theory. The VLFS is modeled as a 2D floating elastic plate with infinite width based on Timoshenko–Mindlin plate theory. The eigenfunction expansion method along with mode-coupling relation is used to analyze the hydroelastic behavior of VLFSs in finite water depth. The contour plots for the plate covered dispersion relation are presented to illustrate the complexity in the roots of the dispersion relation. The wave scattering behavior in the form of reflection and transmission coefficients are studied in detail. The hydroelastic performance of the elastic plate interacting with the ocean wave is analyzed for deflection, strain, bending moment, and shear force along the elastic plate. Further, the study is extended for shallow water approximation, and the results are compared for both Timoshenko–Mindlin plate theory and Kirchhoff’s plate theory. The significance and importance of rotary inertia and shear deformation in analyzing the hydroelastic characteristics of VLFSs are presented. The study will be helpful for scientists and engineers in the design and analysis of the VLFSs.



2019 ◽  
Vol 15 (3) ◽  
pp. 280-295 ◽  
Author(s):  
K. M. Praveen ◽  
D. Karmakar ◽  
C. Guedes Soares








Sign in / Sign up

Export Citation Format

Share Document