scholarly journals Asymptotic behavior of Newton-like inertial dynamics involving the sum of potential and nonpotential terms

Author(s):  
Samir Adly ◽  
Hedy Attouch ◽  
Van Nam Vo

AbstractIn a Hilbert space $\mathcal{H}$ H , we study a dynamic inertial Newton method which aims to solve additively structured monotone equations involving the sum of potential and nonpotential terms. Precisely, we are looking for the zeros of an operator $A= \nabla f +B $ A = ∇ f + B , where ∇f is the gradient of a continuously differentiable convex function f and B is a nonpotential monotone and cocoercive operator. Besides a viscous friction term, the dynamic involves geometric damping terms which are controlled respectively by the Hessian of the potential f and by a Newton-type correction term attached to B. Based on a fixed point argument, we show the well-posedness of the Cauchy problem. Then we show the weak convergence as $t\to +\infty $ t → + ∞ of the generated trajectories towards the zeros of $\nabla f +B$ ∇ f + B . The convergence analysis is based on the appropriate setting of the viscous and geometric damping parameters. The introduction of these geometric dampings makes it possible to control and attenuate the known oscillations for the viscous damping of inertial methods. Rewriting the second-order evolution equation as a first-order dynamical system enables us to extend the convergence analysis to nonsmooth convex potentials. These results open the door to the design of new first-order accelerated algorithms in optimization taking into account the specific properties of potential and nonpotential terms. The proofs and techniques are original and differ from the classical ones due to the presence of the nonpotential term.

2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


2004 ◽  
Vol 4 (3) ◽  
Author(s):  
Franco Obersnel ◽  
Pierpaolo Omari

AbstractAn elementary approach, based on a systematic use of lower and upper solutions, is employed to detect the qualitative properties of solutions of first order scalar periodic ordinary differential equations. This study is carried out in the Carathéodory setting, avoiding any uniqueness assumption, in the future or in the past, for the Cauchy problem. Various classical and recent results are recovered and generalized.


Author(s):  
Liu Hongzhao ◽  
E. Appleton

Abstract A thorough analysis on the characteristics of a grout delivery mechanism in the lining of shafts has been accomplished. The dynamic equation of this spraying mechanism has been established and can describe the system’s performance properties under different conditions of viscous friction forces. The analysis introduces a combined viscous damping coefficient c* and a ratio λ between viscous friction force and inertia force. It is proved theoretically that the relative velocity of the grout is less than the implicate velocity and the emission angle α described in the paper is always larger than 45 °. Numerical simulations are performed by feeding various different parameters into the model. A full discussion of the effects of different variables is presented. Additionally, a formula for calculating the driving torque and power is developed. These studies provide an understanding of the properties of this mechanism and should prove useful in guiding its design and operation.


2021 ◽  
pp. 1-23
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau–Korteweg-deVries–Kawahara equation describes the dynamics of dense discrete systems or small-amplitude gravity capillary waves on water of a finite depth. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.


Sign in / Sign up

Export Citation Format

Share Document