scholarly journals An inertial iterative scheme for solving variational inclusion with application to Nash-Cournot equilibrium and image restoration problems

2021 ◽  
Vol 37 (3) ◽  
pp. 361-380
Author(s):  
JAMILU ABUBAKAR ◽  
◽  
POOM KUMAM ◽  
ABOR ISA GARBA ◽  
MUHAMMAD SIRAJO ABDULLAHI ◽  
...  

Variational inclusion is an important general problem consisting of many useful problems like variational inequality, minimization problem and nonlinear monotone equations. In this article, a new scheme for solving variational inclusion problem is proposed and the scheme uses inertial and relaxation techniques. Moreover, the scheme is self adaptive, that is, the stepsize does not depend on the factorial constants of the underlying operator, instead it can be computed using a simple updating rule. Weak convergence analysis of the iterates generated by the new scheme is presented under mild conditions. In addition, schemes for solving variational inequality problem and split feasibility problem are derived from the proposed scheme and applied in solving Nash-Cournot equilibrium problem and image restoration. Experiments to illustrate the implementation and potential applicability of the proposed schemes in comparison with some existing schemes in the literature are presented.

2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Youli Yu ◽  
Pei-Xia Yang ◽  
Khalida Inayat Noor

We present a projection algorithm for finding a solution of a variational inclusion problem in a real Hilbert space. Furthermore, we prove that the proposed iterative algorithm converges strongly to a solution of the variational inclusion problem which also solves some variational inequality.


Author(s):  
Wanna Sriprad ◽  
Somnuk Srisawat

The purpose of this paper is to study the convergence analysis of an intermixed algorithm for finding the common element of the set of solutions of split monotone variational inclusion problem (SMIV) and the set of a finite family of variational inequality problems. Under the suitable assumption, a strong convergence theorem has been proved in the framework of a real Hilbert space. In addition, by using our result, we obtain some additional results involving split convex minimization problems (SCMPs) and split feasibility problems (SFPs). Also, we give some numerical examples for supporting our main theorem.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pattanapong Tianchai

AbstractIn this paper, we introduce a regularization method for solving the variational inclusion problem of the sum of two monotone operators in real Hilbert spaces. We suggest and analyze this method under some mild appropriate conditions imposed on the parameters, which allow us to obtain a short proof of another strong convergence theorem for this problem. We also apply our main result to the fixed point problem of the nonexpansive variational inequality problem, the common fixed point problem of nonexpansive strict pseudocontractions, the convex minimization problem, and the split feasibility problem. Finally, we provide numerical experiments to illustrate the convergence behavior and to show the effectiveness of the sequences constructed by the inertial technique.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 708 ◽  
Author(s):  
Suthep Suantai ◽  
Suparat Kesornprom ◽  
Prasit Cholamjiak

We investigate the split variational inclusion problem in Hilbert spaces. We propose efficient algorithms in which, in each iteration, the stepsize is chosen self-adaptive, and proves weak and strong convergence theorems. We provide numerical experiments to validate the theoretical results for solving the split variational inclusion problem as well as the comparison to algorithms defined by Byrne et al. and Chuang, respectively. It is shown that the proposed algorithms outrun other algorithms via numerical experiments. As applications, we apply our method to compressed sensing in signal recovery. The proposed methods have as a main advantage that the computation of the Lipschitz constants for the gradient of functions is dropped in generating the sequences.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 818 ◽  
Author(s):  
Jamilu Abubakar ◽  
Poom Kumam ◽  
Abdulkarim Hassan Ibrahim ◽  
Anantachai Padcharoen

The relaxed inertial Tseng-type method for solving the inclusion problem involving a maximally monotone mapping and a monotone mapping is proposed in this article. The study modifies the Tseng forward-backward forward splitting method by using both the relaxation parameter, as well as the inertial extrapolation step. The proposed method follows from time explicit discretization of a dynamical system. A weak convergence of the iterates generated by the method involving monotone operators is given. Moreover, the iterative scheme uses a variable step size, which does not depend on the Lipschitz constant of the underlying operator given by a simple updating rule. Furthermore, the proposed algorithm is modified and used to derive a scheme for solving a split feasibility problem. The proposed schemes are used in solving the image deblurring problem to illustrate the applicability of the proposed methods in comparison with the existing state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document