embryonic genome activation
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 3)

EMBO Reports ◽  
2021 ◽  
Author(s):  
Julia Arand ◽  
H Rosaria Chiang ◽  
David Martin ◽  
Michael P Snyder ◽  
Julien Sage ◽  
...  

2021 ◽  
Author(s):  
Maki Asami ◽  
Brian Y.H. Lam ◽  
Marcella K. Ma ◽  
Kara Rainbow ◽  
Stefanie Braun ◽  
...  

2021 ◽  
Author(s):  
Jasmin Taubenschmid-Stowers ◽  
Maria Rostovskaya ◽  
Fatima Santos ◽  
Sebastian Ljung ◽  
Ricard Argelaguet ◽  
...  

The remodelling of the epigenome and transcriptome of the fertilised oocyte to establish totipotency in the zygote and developing embryo is one of the most critical processes in mammalian embryogenesis. Zygotic or embryonic genome activation (ZGA, EGA) in the 2-cell embryo in mouse, and the 8-cell embryo in humans, constitutes the first major wave of transcription. Failure to initiate ZGA leads to developmental defects, and contributes to the high attrition rates of human pre-implantation embryos. Due to limitations in cell numbers and experimental tractability, the mechanisms that regulate human embryonic genome activation in the totipotent embryo remain poorly understood. Here we report the discovery of human 8-cell like cells (8CLCs) specifically among naive embryonic stem cells, but not primed pluripotent cells. 8CLCs express ZGA marker genes such as ZSCAN4, LEUTX and DUXA and their transcriptome closely resembles that of the 8-cell human embryo. 8-cell like cells reactivate 8-cell stage specific transposable elements such as HERVL and MLT2A1 and are characterized by upregulation of the DNA methylation regulator DPPA3. 8CLCs show reduced SOX2 protein, and can be identified based on expression of the novel ZGA-associated protein markers TPRX1 and H3.Y in vitro. Overexpression of the transcription factor DUX4 as well as spliceosome inhibition increase ZGA-like transcription and enhance TPRX1+ 8CLCs formation. Excitingly, the in vitro identified 8CLC marker proteins TPRX1 and H3.Y are also expressed in 8-cell human embryos at the time of genome activation and may thus be relevant in vivo. The discovery of 8CLCs provides a unique opportunity to model and manipulate human ZGA-like transcriptional programs in vitro, and might provide critical functional insights into one of the earliest events in human embryogenesis in vivo.


Author(s):  
D E Goszczynski ◽  
P S Tinetti ◽  
Y H Choi ◽  
K Hinrichs ◽  
P J Ross

Abstract Embryonic genome activation is a critical event in embryo development, in which the transcriptional program of the embryo is initiated. The timing and regulation of this process are species-specific. In vitro embryo production is becoming an important clinical and research tool in the horse; however, very little is known about genome activation in this species. The objective of this work was to identify the timing of genome activation, and the transcriptional networks involved, in in vitro-produced horse embryos. RNA-Seq was performed on oocytes and embryos at eight stages of development (MII, zygote, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst; n = 6 per stage, 2 from each of 3 mares). Transcription of seven genes was initiated at the 2-cell stage. The first substantial increase in gene expression occurred at the 4-cell stage (minor activation), followed by massive gene upregulation and downregulation at the 8-cell stage (major activation). An increase in intronic nucleotides, indicative of transcription initiation, was also observed at the 4-cell stage. Co-expression network analyses identified groups of genes that appeared to be regulated by common mechanisms. Investigation of hub genes and binding motifs enriched in the promoters of co-expressed genes implicated several transcription factors. This work represents, to the best of our knowledge, the first genomic evaluation of embryonic genome activation in horse embryos.


2021 ◽  
Vol 14 (4) ◽  
pp. 328
Author(s):  
Michal Benc ◽  
Frantisek Strejcek ◽  
Martin Morovic ◽  
Alexandra Bartkova ◽  
Matej Murin ◽  
...  

The nucleolus is an important nucleus sub-organelle found in almost all eukaryotic cells. On the one hand, it is known as a differentiated active site of ribosome biogenesis in somatic cells, but on the other hand, in fully grown oocytes, zygotes, and early embryos (up to the major embryonic genome activation), it is in the form of a particular homogenous and compact structure called a fibrillar sphere. Nowadays, thanks to recent studies, we know many important functions of this, no doubt, interesting membraneless nucleus sub-organelle involved in oocyte maturation, embryonic genome activation, rRNA synthesis, etc. However, many questions are still unexplained and remain a mystery. Our aim is to create a comprehensive overview of the recent knowledge on the fibrillar sphere and envision how this knowledge could be utilized in further research in the field of biotechnology and nucleolotransfer therapy.


2020 ◽  
Vol 53 (5) ◽  
pp. 545-560.e7
Author(s):  
Andrés Gambini ◽  
Paula Stein ◽  
Virginia Savy ◽  
Edward J. Grow ◽  
Brian N. Papas ◽  
...  

2020 ◽  
Vol 32 (2) ◽  
pp. 125
Author(s):  
H. Ming ◽  
J. Sun ◽  
R. Pasquariello ◽  
J. R. Herrick ◽  
Y. Yuan ◽  
...  

Chromatin reorganization governs gene expression regulation during pre-implantation development. However, the global chromatin landscape and its dynamics in this period remain unexplored in bovine. In this study, we constructed a genome-wide map of accessible chromatin in bovine oocytes and early embryos using an improved assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). We analysed pools of 20 germinal vesicles or MII oocytes or 2-, 4-, 8-, 16-cell, morula, and blastocyst stage invitro-produced embryos. We conducted ATAC-seq on six pools for each stage and an additional four pools of invivo-derived morula and blastocysts and six replicates using individual Day 14 elongating embryos. We obtained ~110 million paired end reads uniquely mapped to the bovine reference genome for each stage. Hierarchical clustering, t-distributed stochastic neighbour embedding, and principal component analysis showed four distinct patterns for open chromatin status: (1) low accessibility in germinal vesicles and MII oocytes and in 2- and 4-cell embryos; (2) significantly elevated accessibility in 8-cell, 16-cell, and morula embryos; (3) less accessibility in blastocysts; and (4) extremely high accessibility in elongating embryos. This dynamic and sequential chromatin remodelling is consistent with transcription activation during the bovine minor embryonic genome activation from fertilization to 4-cell, major embryonic genome activation at 8-cell, first differentiation at blastocyst and drastic transcription initiation for embryo elongation. Genome-wide characteristics of accessible chromatin showed (1) accessible chromatin near the transcription start sites of active genes and CpG-rich promoters; (2) widespread accessible chromatin regions extensively overlapped with transposable elements; (3) distal peaks preferentially enriched for repeats including LINE, SINE, and LTR from 8-cell to morula embryos, especially for LTR, whereas enrichment in simple repeats were found from oocytes to 4-cell and in elongating embryos; and (4) highly stage-specific transcription factor motifs in distal peaks were unveiled. By integrating the maps of chromatin accessibility with bovine embryo transcriptomes and DNA methylomes, we found promoter accessibility and DNA methylation in bovine embryos correlated with both gene activities and CpG densities. Most importantly, we constructed the regulatory networks of stage-specific expressed genes and stage-specific activated genes with three omics datasets in bovine early embryos and revealed conserved and distinctive transcriptional regulatory networks between invivo- and invitro-derived embryos. This comprehensive analysis revealed critical features of the chromatin landscape and epigenetic reprogramming during bovine early embryo development.


2019 ◽  
Vol 317 (4) ◽  
pp. C655-C664 ◽  
Author(s):  
Meghan L. Ruebel ◽  
Kailey A. Vincent ◽  
Peter Z. Schall ◽  
Kai Wang ◽  
Keith E. Latham

Embryonic genome activation (EGA) in mammals begins with transient expression of a large group of genes (EGA1). Importantly, entry into and exit from the 2C/EGA state is essential for viability. Dux family member genes play an integral role in EGA1 by activating other EGA marker genes such as Zscan4 family members. We previously reported that structural maintenance of chromosomes flexible hinge domain-containing protein 1 ( Smchd1) is expressed at the mRNA and protein levels in mouse oocytes and early embryos and that elimination of Smchd1 expression inhibits inner cell mass formation, blastocyst formation and hatching, and term development. We extend these observations here by showing that siRNA knockdown of Smchd1 in zygotes results in overexpression of Dux and Zscan4 in two-cell embryos, with continued overexpression of Dux at least through the eight-cell stage as well as prolonged expression of Zscan4. These results are consistent with a role for SMCHD1 in promoting exit from the EGA1 state and establishing SMCHD1 as a maternal effect gene and the first chromatin regulatory factor identified with this role. Additionally, bioinformatics analysis reveals that SMCHD1 also contributes to the creation of a transcriptionally repressive state to allow correct gene regulation.


Sign in / Sign up

Export Citation Format

Share Document