tet enzymes
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 57)

H-INDEX

18
(FIVE YEARS 6)

EMBO Reports ◽  
2021 ◽  
Author(s):  
Julia Arand ◽  
H Rosaria Chiang ◽  
David Martin ◽  
Michael P Snyder ◽  
Julien Sage ◽  
...  

Author(s):  
Angelika Stapińska-Syniec ◽  
Marta Grabiec ◽  
Marcin Rylski ◽  
Albert Acewicz ◽  
Michał Sobstyl

Background and Study Aims Since the new WHO classification of nervous system tumors (2016 revised 4th edition) has been released, gliomas are classified depending on molecular and genetic markers in connection with histopathology, instead of histopathology itself as it was in the previous classification. Over the last years, epigenetic analysis has taken on increased importance in the diagnosis and treatment of different cancers. Multiple studies confirmed that DNA methylation and hydroxymethylation play an important role in the regulation of gene expression during carcinogenesis. In this review, we aim to present the current state of knowledge on DNA hydroxymethylation in human high-grade gliomas (WHO grade III and IV). Results The correlation of DNA hydroxymethylation and survival in glioblastoma patients was evaluated by different studies. The majority of them showed that the expression of 5-hydroxymethylcytosine (5-hmC) and Ten-eleven translocation (TET) enzymes were significantly reduced, sometimes almost undetectable in high-grade gliomas in comparison with the control brain. A decreased level of 5-hmC was associated with poor survival in patients, but high expression of the TET3 enzyme was related to a better prognosis for GBM patients. This points to the relevance of DNA hydroxymethylation in molecular diagnostics of human gliomas, including survival estimation or differentiating patients in terms of response to the treatment. Conclusion Future studies may shed some more light on this epigenetic mechanism involved in the pathogenesis of human high-grade gliomas and help to develop new targeted therapies.


Cell Reports ◽  
2021 ◽  
Vol 37 (10) ◽  
pp. 110095
Author(s):  
Yahui Lan ◽  
Kelly M. Banks ◽  
Heng Pan ◽  
Nipun Verma ◽  
Gary R. Dixon ◽  
...  

2021 ◽  
Author(s):  
Ksenia Skvortsova ◽  
Stephanie Bertrand ◽  
Danila Voronov ◽  
Paul Edward Duckett ◽  
Samuel E Ross ◽  
...  

DNA methylation (5-methylcytosine; 5mC) is a repressive gene-regulatory mark required for vertebrate embryogenesis. Genomic 5mC is tightly regulated through the coordinated action of DNA methyltransferases, which deposit 5mC, and TET enzymes, which participate in its active removal through the formation of 5-hydroxymethylcytosine (5hmC). TET enzymes are essential for mammalian gastrulation and activation of vertebrate developmental enhancers, however, to date, a clear picture of 5hmC function, abundance, and genomic distribution in non-vertebrate lineages is lacking. By employing base-resolution 5mC and 5hmC quantification during sea urchin and lancelet embryogenesis, we shed light on the roles of non-vertebrate 5hmC and TET enzymes. We find that these invertebrate deuterostomes employ TET enzymes for targeted demethylation of regulatory regions associated with developmental genes and show that the complement of identified 5hmC-regulated genes is conserved to vertebrates. This work thus demonstrates that active 5mC removal from regulatory regions is a common feature of deuterostome embryogenesis suggestive of unexpected deep conservation of a major gene-regulatory module.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1145-1145
Author(s):  
Vipul Shukla ◽  
Daniela Samaniego-Castruita ◽  
Zhen Dong ◽  
Edahi Gonzalez Avalos ◽  
Qingqing Yan ◽  
...  

Abstract The three members of TET family of Fe(II) and alpha-ketoglutarate-dependent dioxygenases mediate DNA demethylation by sequentially oxidizing 5-methylcytosine (5mC) to 5-hydroxymethyl- (5hmC), 5-formyl- (5fC) and 5-carboxyl-cytosine (5caC). TET enzymes are required for normal development, and loss of TET function due to mutations, metabolic perturbations and hypoxia, among other mechanisms, occurs frequently in many hematological malignancies and solid tumors. Recent studies have identified mutations in TET proteins (TET2, most commonly) and metabolic enzymes which regulate TET catalytic activity in a large cohort of patients with Diffuse Large B-cell Lymphoma (DLBCL). However, the clinical significance of these mutations in DLBCL and the molecular mechanisms through which TET proteins suppress development of malignancies in general, are not fully-understood. To investigate the role of TET loss-of-function in the pathogenesis of DLBCL, we generated mice with B-cell-specific deletion of TET2 and TET3, the major TET homologs expressed in mature B cells. TET deficiency in B cells perturbed mature B cell homeostasis resulting in spontaneous development of Germinal Center-derived B cell lymphomas. Moreover, B cells with TET deficiency demonstrated increased genomic instability, a feature previously associated with TET loss-of-function in other hematopoietic lineages. Transcriptional profiling of TET-deficient expanded B cells revealed altered expression of genes and proteins involved in modulating the levels of secondary DNA structures, G-quadruplexes and DNA:RNA hybrids (R-loops) which have been linked to genomic instability and transcriptional perturbations in many different cancers. Using previously described methods and newer approaches, we observed a substantial increase in the levels of G-quadruplex and R-loop structures in TET-deficient B cells compared with control B cells. The increase in G-quadruplex and R-loop structures was evident in naïve, activated and GC B cells following acute TET deletion as well as in TET-deficient myeloid cells and T cells. Genome-wide mapping studies and high-throughput genome-wide translocation sequencing (HTGTS) showed a strong correlation of increased G-quadruplex and R-loop structures with increased DNA DSBs in switch regions of immunoglobulin heavy chain locus in TET-deficient B cells. Deletion of the DNA methyltransferase DNMT1 in TET-deficient B cells prevented the expansion of germinal center B cells, diminished the accumulation of G-quadruplexes and R-loops, and caused a notable delay in lymphoma development, consistent with the opposing functions of DNMT and TET enzymes in DNA methylation and demethylation. CRISPR-mediated depletion of nucleases and helicases that regulate G-quadruplexes and R-loops decreased the viability of TET-deficient B cells. Our studies suggest a molecular mechanism by which TET loss-of-function might predispose to development of B cell-derived and other malignancies, and highlight novel therapeutic avenues that could be further explored. Disclosures Rao: Cambridge Epigenetix: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 503-503
Author(s):  
Kathryn Gunn ◽  
Matti Myllykoski ◽  
John Cao ◽  
Bill Diplas ◽  
Hai Yan ◽  
...  

Abstract Gain-of-function mutations in isocitrate dehydrogenase enzymes IDH1 and IDH2 occur in ∼10% of acute myeloid leukemias (AML) and >80% of gliomas. The mutant enzymes convert 2-oxoglutarate (2OG) to the oncometabolite R-2-hydroxyglutarate (R-2HG). R-2HG promotes cellular transformation by modulating the activities of 2OG-dependent dioxygenases (2OGDDs). The only functionally validated direct target of R-2HG is TET2, a 2OGDD myeloid tumor suppressor that catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Interestingly, in clonal myeloid disorders the patterns of IDH and TET2 mutations are vastly different. TET2 mutations occur at similar frequencies in clonal hematopoiesis of unknown significance (CHIP), lower- and higher-grade myeloproliferative (MPN) and myelodysplastic (MDS) disorders, and primary and secondary AML. IDH mutations, on the other hand, are associated with higher-grade and blast-phase MPN and MDS and with de novo AML and are rare in CHIP and low-grade MDS. This suggests that mutant IDH promotes a more aggressive disease phenotype and that R-2HG has additional targets other than TET2 that contribute to its leukemogenic activity. To ask if the in vitro transforming activity of R-2HG directly correlates with TET2 inhibition, we treated TF-1 cells, a cytokine-dependent human AML cell line, with a dose range of cell-permeable esterified R-2HG. We found that R-2HG induces cytokine independence at concentrations that have no effect on 5hmC levels. To identify other 2OGDD myeloid tumor suppressors that could be contributing to R-2HG-mediated transformation, we performed a positive-selection CRISPR-Cas9 screen under cytokine-poor conditions in TF-1 cells. We identified three H3K4 histone lysine demethylases, KDM5A, KDM5C and KDM5D, as genes whose sgRNAs were enriched upon cytokine withdrawal. Triple knockout of KDM5A, KDM5C and KDM5D (TKO) in TF-1 cells induces robust cytokine independence. Likewise, treatment of TF-1 cells with KDM5c70, a specific inhibitor of KDM5 enzymes, strongly induces TF-1 cytokine independence. Of note, KDM5 inhibition has no effect on TET2 expression or 5hmC levels. We further found that R-2HG is a more potent inhibitor of KDM5A, KDM5C and KDM5D than of TET2. We then assessed the effect of mutant IDH1 expression, TKO, R-2HG treatment and KDM5c70 treatment on H3K4 trimethylation by ChIP-seq and found that each of these perturbations results in a significant enrichment in H3K4me3 peaks relative to controls. TET enzymes are not recurrently mutated in glioma and although there is a strong correlation between mutant IDH status and the CpG island methylator phenotype (CIMP), direct inhibition of TET2 by R-2HG has not been reproducibly demonstrated in glioma. To ask if TET2 activity is suppressed in IDH mutant glioma, we quantified 5hmC levels in a panel of primary IDH wild-type and IDH mutant glioma and AML samples by mass spectrometry. We found that, unlike in AML, in glioma there is no correlation between IDH1 mutation status and loss of 5hmC. We likewise saw no correlation between 5hmC levels and either IDH mutation status or intracellular R-2HG levels in patient derived xenograft (PDX) models of glioma. Given the lack of evidence that TET enzymes are tumor suppressor targets of R-2HG in IDH mutant glioma, we asked if mutant IDH positivity is associated with increased levels of H3K4 methylation in glioma. We performed ChIP-seq on a panel of IDH wild-type and IDH mutant glioma PDX lines and found H3K4me peaks to be highly enriched in the IDH mutant lines when compared to IDH wild-type lines. Trimethyl-H3K4 levels were likewise increased in isogenic normal human astrocyte (NHA) cells ectopically expressing mutant IDH1. Collectively, these data suggest that R-2HG inhibits KDM5 histone lysine demethylases to promote mutant IDH-mediated transformation in AML and glioma. These studies identify a novel direct target of R-2HG in IDH mutant tumors and provide a functional link between IDH mutations and dysregulated histone lysine methylation in cancer. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101228
Author(s):  
Xiaokang Wang ◽  
Wojciech Rosikiewicz ◽  
Yurii Sedkov ◽  
Tanner Martinez ◽  
Baranda S Hansen ◽  
...  

DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiejun Shi ◽  
Jianfeng Xu ◽  
Yiling Elaine Chen ◽  
Jason Sheng Li ◽  
Ya Cui ◽  
...  

AbstractThe mammalian DNA methylome is formed by two antagonizing processes, methylation by DNA methyltransferases (DNMT) and demethylation by ten-eleven translocation (TET) dioxygenases. Although the dynamics of either methylation or demethylation have been intensively studied in the past decade, the direct effects of their interaction on gene expression remain elusive. Here, we quantify the concurrence of DNA methylation and demethylation by the percentage of unmethylated CpGs within a partially methylated read from bisulfite sequencing. After verifying ‘methylation concurrence’ by its strong association with the co-localization of DNMT and TET enzymes, we observe that methylation concurrence is strongly correlated with gene expression. Notably, elevated methylation concurrence in tumors is associated with the repression of 40~60% of tumor suppressor genes, which cannot be explained by promoter hypermethylation alone. Furthermore, methylation concurrence can be used to stratify large undermethylated regions with negligible differences in average methylation into two subgroups with distinct chromatin accessibility and gene regulation patterns. Together, methylation concurrence represents a unique methylation metric important for transcription regulation and is distinct from conventional metrics, such as average methylation and methylation variation.


2021 ◽  
Author(s):  
Masaki Yagi ◽  
Fei Ji ◽  
Jocelyn Charlton ◽  
Simona Cristea ◽  
Kathleen Messemer ◽  
...  

The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity.


Author(s):  
Julia Arand ◽  
Renee A. Reijo Pera ◽  
Mark Wossidlo

AbstractHuman preimplantation development is characterized by low developmental rates that are poorly understood. Early mammalian embryogenesis is characterized by a major phase of epigenetic reprogramming, which involves global DNA methylation changes and activity of TET enzymes; the importance of DNA methylation reprogramming for successful human preimplantation development has not been investigated. Here, we analyzed early human embryos for dynamic changes in 5-methylcytosine and its oxidized derivatives generated by TET enzymes. We observed that 5-methylcytosine and 5-hydroxymethylcytosine show similar, albeit less pronounced, asymmetry between the parental pronuclei of human zygotes relative to mouse zygotes. Notably, we detected low levels of 5-formylcytosine and 5-carboxylcytosine, with no apparent difference in maternal or paternal pronuclei of human zygotes. Analysis of later human preimplantation stages revealed a mosaic pattern of DNA 5C modifications similar to those of the mouse and other mammals. Strikingly, using noninvasive time-lapse imaging and well-defined cell cycle parameters, we analyzed normally and abnormally developing human four-cell embryos for global reprogramming of DNA methylation and detected lower 5-methylcytosine and 5-hydroxymethylcytosine levels in normal embryos compared to abnormal embryos. In conclusion, our results suggest that DNA methylation reprogramming is conserved in humans, with human-specific dynamics and extent. Furthermore, abnormalities in the four-cell-specific DNA methylome in early human embryogenesis are associated with abnormal development, highlighting an essential role of epigenetic reprogramming for successful human embryogenesis. Further research should identify the underlying genomic regions and cause of abnormal DNA methylation reprogramming in early human embryos.


Sign in / Sign up

Export Citation Format

Share Document