kirchhoff plate theory
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 11 ◽  
pp. 184798042110011
Author(s):  
Mahmoud M Selim ◽  
Taher A Nofal

In this work, an attempt is done to apply the Kirchhoff plate theory to find out the vibrational analyses of a nanoplate incorporating surface irregularity effects. The effects of surface irregularity on natural frequency of vibration of nanomaterials, especially for nanoplates, have not been investigated before, and most of the previous research have been carried for regular nanoplates. Therefore, it must be emphasized that the vibrations of irregular nanoplate are novel and applicable for the nanodevices, in which nanoplates act as the main structure of the nanocomposite. The surface irregularity is assumed in the parabolic form at the surface of the nanoplate. A novel equation of motion and frequency equation is derived. The obtained results provide a better representation of the vibration behavior of irregular nanoplates. It has been observed that the presence of surface irregularity affects considerably on the natural frequency of vibrational nanoplates. In addition, it has been seen that the natural frequency of nanoplate decreases with the increase of surface irregularity parameter. Finally, it can be concluded that the present results may serve as useful references for the application and design of nano-oscillators and nanodevices, in which nanoplates act as the most prevalent nanocomposites structural element.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050062
Author(s):  
Zhiyuan Yang ◽  
Peng Wu ◽  
Weiqing Liu ◽  
Hai Fang

In this paper, an analytical solution for functionally graded sandwich plate adhesively bonded by viscoelastic interlayer is proposed to research its time-dependent behavior. The Kirchhoff plate theory is employed to describe the mechanical property of each gradient layer with elastic modulus defined as the arbitrary function through the thickness direction. The standard linear solid model is applied to simulate the viscoelasticity of the interlayer with considering the strain memory effect. By the use of the vibrational method and the Laplace transformation, the solutions of stresses and displacements are solved analytically. The validation study indicates that the present solution is correct and more effective than the finite element solution because of the fine mesh both in the geometric shape and the time step. In addition, the influences of the geometry and material parameters on the time-dependent behavior of the sandwich plate are investigated in detail.


Author(s):  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
Heung S. Kim

As a compact and durable design concept, energy harvesting skin (EH skin), which consists of piezoelectric patches directly attached onto the surface of a vibrating structure as one embodiment, has been recently proposed. This study aims at developing an electromechanically-coupled analytical model of the EH skin so as to understand its electromechanical behavior and get physical insights about important design considerations. Based on the Kirchhoff plate theory, the Hamilton’s principle is used to derive the differential equations of motion. The Rayleigh-Ritz method is implemented to calculate the natural frequency and the corresponding mode shapes of the EH skin. The electrical circuit equation is derived by substituting the piezoelectric constitutive relation into Gauss’s law. Finally, the steady-state output voltage is obtained by solving the differential equations of motion and electrical circuit equation simultaneously. The results of the analytical model are verified by comparing those of the finite element analysis (FEA) in a hierarchical manner.


Sign in / Sign up

Export Citation Format

Share Document