anoxic sediments
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 16)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Astrid Hylén ◽  
Stefano Bonaglia ◽  
Elizabeth Robertson ◽  
Ugo Marzocchi ◽  
Mikhail Kononets ◽  
...  

2021 ◽  
Author(s):  
Guangyi Su ◽  
Jakob Zopfi ◽  
Moritz F. Lehmann

Freshwater lakes represent an important source of the potent greenhouse gas methane (CH4) to the atmosphere. Methane emissions are regulated to large parts by aerobic (MOx) and anaerobic (AOM) oxidation of methane that are important sinks in lakes. In contrast to marine benthic environments, our knowledge about the modes of AOM and the related methanotrophic microorganisms in anoxic lake sediments is still rudimentary. Here we demonstrate the occurrence of AOM in the anoxic sediments of Lake Sempach (Switzerland), with maximum in situ AOM rates observed within the surface sediment layers in presence of multiple groups of methanotrophic bacteria and various oxidants known to support AOM. However, substrate-amended incubations (with NO2-, NO3-, SO42-, Fe3+ and Mn4+) revealed that none of the electron acceptors previously reported to support AOM enhanced methane turnover in Lake Sempach sediments under anoxic conditions. In contrast, the addition of oxygen to the anoxic sediments resulted in an approximately tenfold increase in methane oxidation relative to the anoxic incubations. Phylogenetic and isotopic evidence indicate that both Type I and Type II aerobic methanotrophs were growing on methane under both oxic and anoxic conditions, although methane assimilation rates were an order of magnitude higher under oxic conditions. While the anaerobic electron acceptor responsible for AOM could not be identified, these findings expand our understanding of the metabolic versatility of canonically aerobic methanotrophs under anoxic conditions, with important implications for future investigations to identify methane oxidation processes. Bacterial AOM by facultative aerobic methane oxidizers might be of much larger environmental significance in reducing methane emissions than previously thought.


2021 ◽  
Vol 10 (26) ◽  
Author(s):  
Archana Yadav ◽  
C. Ryan Hahn ◽  
Mostafa S. Elshahed ◽  
Noha H. Youssef
Keyword(s):  

We analyzed five metagenome-assembled genomes (MAGs) belonging to the rare, yet-uncultured phylum CSSED10-310 recovered from the anoxic sediments of Zodletone Spring (Oklahoma, USA). Our analysis suggests their potential involvement in sulfite respiration.


2021 ◽  
Author(s):  
Feifei Liu ◽  
Zhenyu Wang ◽  
Bo Wu ◽  
Jesper T. Bjerg ◽  
Wenzhe Hu ◽  
...  

2020 ◽  
Vol 86 (21) ◽  
Author(s):  
Karen G. Lloyd ◽  
Jordan T. Bird ◽  
Joy Buongiorno ◽  
Emily Deas ◽  
Richard Kevorkian ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Aurèle Vuillemin ◽  
Sergio Vargas ◽  
Ömer K. Coskun ◽  
Robert Pockalny ◽  
Richard W. Murray ◽  
...  

ABSTRACT How microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate phylum “Candidatus Atribacteria,” which exhibited patterns of gene expression consistent with fermentative, and potentially acetogenic, metabolism. “Ca. Atribacteria” dominated throughout the 8 million-year-old cored sequence, despite the detection limit for gene expression being reached in 5 million-year-old sediments. The subseafloor reproducing “Ca. Atribacteria” also expressed genes encoding a bacterial microcompartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+. Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor “Ca. Atribacteria,” as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the “Ca. Atribacteria” can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions-of-years-old anoxic sediments. IMPORTANCE The deep subseafloor sedimentary biosphere is one of the largest ecosystems on Earth, where microbes subsist under energy-limited conditions over long timescales. It remains poorly understood how mechanisms of microbial metabolism promote increased fitness in these settings. We discovered that the candidate bacterial phylum “Candidatus Atribacteria” dominated a deep-sea subseafloor ecosystem, where it exhibited increased transcription of genes associated with acetogenic fermentation and reproduction in million-year-old sediment. We attribute its improved fitness after burial in the seabed to its capabilities to derive energy from increasingly oxidized metabolites via a bacterial microcompartment and utilize a potentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic requirements for growth. Our findings show that “Ca. Atribacteria” can perform all the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in anoxic sediments that are millions of years old.


2020 ◽  
Author(s):  
Aurèle Vuillemin ◽  
Sergio Vargas ◽  
Ömer K. Coskun ◽  
Robert Pockalny ◽  
Richard W. Murray ◽  
...  

AbstractHow microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a five million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate Phylum “Candidatus Atribacteria”, which exhibited patterns of gene expression consistent with a fermentative, and potentially acetogenic metabolism. “Ca. Atribacteria” dominated throughout the entire eight million-year-old cored sequence, despite the detection limit for gene expression being reached in five million-year-old sediments. The subseafloor reproducing “Ca. Atribacteria” also expressed genes encoding a bacterial micro-compartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+. Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor “Ca. Atribacteria”, as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the “Ca. Atribacteria” can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions of years old anoxic sediments.ImportanceThe deep subseafloor sedimentary biosphere is one of the largest ecosystems on Earth, where microbes subsist under energy-limited conditions over long timescales. It remains poorly understood how mechanisms of microbial metabolism promote increased fitness in these settings. We discovered that the candidate bacterial Phylum “Candidatus Atribacteria” dominated a deep-sea subseafloor ecosystem, where it exhibited increased transcription of genes associated with acetogenic fermentation and reproduction in million-year old sediment. We attribute its improved fitness after burial in the seabed to its capabilities to derive energy from increasingly oxidized metabolites via a bacterial micro-compartment and utilize a potentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic requirements for growth. Our findings show that “Ca. Atribacteria” can perform all the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in anoxic sediments that are millions of years old.


Sign in / Sign up

Export Citation Format

Share Document