scholarly journals Atribacteria reproducing over millions of years in the Atlantic abyssal subseafloor

2020 ◽  
Author(s):  
Aurèle Vuillemin ◽  
Sergio Vargas ◽  
Ömer K. Coskun ◽  
Robert Pockalny ◽  
Richard W. Murray ◽  
...  

AbstractHow microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a five million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate Phylum “Candidatus Atribacteria”, which exhibited patterns of gene expression consistent with a fermentative, and potentially acetogenic metabolism. “Ca. Atribacteria” dominated throughout the entire eight million-year-old cored sequence, despite the detection limit for gene expression being reached in five million-year-old sediments. The subseafloor reproducing “Ca. Atribacteria” also expressed genes encoding a bacterial micro-compartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+. Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor “Ca. Atribacteria”, as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the “Ca. Atribacteria” can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions of years old anoxic sediments.ImportanceThe deep subseafloor sedimentary biosphere is one of the largest ecosystems on Earth, where microbes subsist under energy-limited conditions over long timescales. It remains poorly understood how mechanisms of microbial metabolism promote increased fitness in these settings. We discovered that the candidate bacterial Phylum “Candidatus Atribacteria” dominated a deep-sea subseafloor ecosystem, where it exhibited increased transcription of genes associated with acetogenic fermentation and reproduction in million-year old sediment. We attribute its improved fitness after burial in the seabed to its capabilities to derive energy from increasingly oxidized metabolites via a bacterial micro-compartment and utilize a potentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic requirements for growth. Our findings show that “Ca. Atribacteria” can perform all the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in anoxic sediments that are millions of years old.

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Aurèle Vuillemin ◽  
Sergio Vargas ◽  
Ömer K. Coskun ◽  
Robert Pockalny ◽  
Richard W. Murray ◽  
...  

ABSTRACT How microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate phylum “Candidatus Atribacteria,” which exhibited patterns of gene expression consistent with fermentative, and potentially acetogenic, metabolism. “Ca. Atribacteria” dominated throughout the 8 million-year-old cored sequence, despite the detection limit for gene expression being reached in 5 million-year-old sediments. The subseafloor reproducing “Ca. Atribacteria” also expressed genes encoding a bacterial microcompartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+. Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor “Ca. Atribacteria,” as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the “Ca. Atribacteria” can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions-of-years-old anoxic sediments. IMPORTANCE The deep subseafloor sedimentary biosphere is one of the largest ecosystems on Earth, where microbes subsist under energy-limited conditions over long timescales. It remains poorly understood how mechanisms of microbial metabolism promote increased fitness in these settings. We discovered that the candidate bacterial phylum “Candidatus Atribacteria” dominated a deep-sea subseafloor ecosystem, where it exhibited increased transcription of genes associated with acetogenic fermentation and reproduction in million-year-old sediment. We attribute its improved fitness after burial in the seabed to its capabilities to derive energy from increasingly oxidized metabolites via a bacterial microcompartment and utilize a potentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic requirements for growth. Our findings show that “Ca. Atribacteria” can perform all the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in anoxic sediments that are millions of years old.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1344
Author(s):  
Naima Lemjiber ◽  
Khalid Naamani ◽  
Annabelle Merieau ◽  
Abdelhi Dihazi ◽  
Nawal Zhar ◽  
...  

Bacterial burn is one of the major diseases affecting pear trees worldwide, with serious impacts on producers and economy. In Morocco, several pear trees (Pyrus communis) have shown leaf burns since 2015. To characterize the causal agent of this disease, we isolated fourteen bacterial strains from different parts of symptomatic pear trees (leaves, shoots, fruits and flowers) that were tested in planta for their pathogenicity on Louise bonne and Williams cultivars. The results showed necrotic lesions with a significant severity range from 47.63 to 57.77% on leaves of the Louise bonne cultivar inoculated with isolate B10, while the other bacterial isolates did not induce any disease symptom. 16S rRNA gene sequencing did not allow robust taxonomic discrimination of the incriminated isolate. Thus, we conducted whole-genome sequencing (WGS) and phylogenetic analyzes based on gyrA, gyrB and cdaA gene sequences, indicating that this isolate belongs to the Bacillus altitudinis species. This taxonomic classification was further confirmed by the Average Nucleotide Identity (ANI) and the in silico DNA-DNA hybridization (isDDH) analyzes compared to sixty-five Bacillus spp. type strains. The genome was mined for genes encoding carbohydrate-active enzymes (CAZymes) known to play a role in the vegetal tissue degradation. 177 candidates with functions that may support the in planta phytopathogenicity results were identified. To the best of our knowledge, this is the first data reporting B. altitudinis as agent of leaf burn in P. communis in Morocco. Our dataset will improve our knowledge on spread and pathogenicity of B. altitudinis genotypes that appears as emergent phytopathogenic agent, unveiling virulence factors and their genomic location (i.e., within genomic islands or the accessory genome) to induce trees disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Saladrigas-García ◽  
M. D’Angelo ◽  
H. L. Ko ◽  
P. Nolis ◽  
Y. Ramayo-Caldas ◽  
...  

AbstractWeaning is a critical period in the life of pigs with repercussions on their health and welfare and on the economy of the swine industry. This study aimed to assess the effect of the commercial early weaning on gut microbiota, intestinal gene expression and serum metabolomic response via an integrated-omic approach combining 16S rRNA gene sequencing, the OpenArray gene expression technology and 1H-NMR spectroscopy. Fourteen piglets from different litters were sampled for blood, jejunum tissue and caecal content two days before (− 2d), and three days after (+ 3d) weaning. A clearly differential ordination of caecal microbiota was observed. Higher abundances of Roseburia, Ruminococcus, Coprococcus, Dorea and Lachnospira genera in weaned piglets compared to prior to weaning showed the quick microbial changes of the piglets’ gut microbiota. Downregulation of OCLN, CLDN4, MUC2, MUC13, SLC15A1 and SLC13A1 genes, also evidenced the negative impact of weaning on gut barrier and digestive functions. Metabolomic approach pinpointed significant decreases in choline, LDL, triglycerides, fatty acids, alanine and isoleucine and increases in 3-hydroxybutyrate after weaning. Moreover, the correlation between microbiota and metabolome datasets revealed the existence of metabolic clusters interrelated to different bacterial clusters. Our results demonstrate the impact of weaning stress on the piglet and give insights regarding the associations between gut microbiota and the animal gene activity and metabolic response.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yawei Fu ◽  
Xiaoxiao Liang ◽  
Donghua Li ◽  
Hu Gao ◽  
Yadong Wang ◽  
...  

Tryptophan (Trp) has received increasing attention in the maintenance of intestinal function. In this study, improved triploid crucian carp (ITCC) fed diets containing 6.35 g kg−1 Trp had higher average daily gain (ADG) and improved villus height (VH) and crypt depth (CD) in the intestine compared to the control group. To elucidate the potential mechanisms, we used RNA sequencing (RNA-seq) to investigate changes in the intestinal transcriptome and 16S rRNA gene sequencing to measure the intestinal microbiota in response to 6.35 g kg−1 Trp feeding in ITCC. Dietary Trp altered intestinal gene expression involved in nutrient transport and metabolism. Differentially expressed transcripts (DETs) were highly enriched in key pathways containing protein digestion and absorption and the AMPK signaling pathway. 16S rRNA sequencing showed that 6.35 g kg−1 Trp significantly increased the abundance of the genus Cetobacterium, and the Firmicutes/Bacteroidetes ratio at the phylum level (P < 0.05). In addition, bacterial richness indices (Simpson index) significantly increased (P < 0.05) community evenness in response to 6.35 g kg−1 Trp. In conclusion, appropriate dietary Trp improves the growth performance, and influences the intestinal flora of ITCC. This study might be helpful to guide the supply of dietary exogenous Trp in ITCC breeding.


mSystems ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Feargal J. Ryan ◽  
Damian P. Drew ◽  
Chloe Douglas ◽  
Lex E. X. Leong ◽  
Max Moldovan ◽  
...  

ABSTRACT Bronchopulmonary dysplasia (BPD) is a common chronic lung condition in preterm infants that results in abnormal lung development and leads to considerable morbidity and mortality, making BPD one of the most common complications of preterm birth. We employed RNA sequencing and 16S rRNA gene sequencing to profile gene expression in blood and the composition of the fecal microbiota in infants born at <29 weeks gestational age and diagnosed with BPD in comparison to those of preterm infants that were not diagnosed with BPD. 16S rRNA gene sequencing, performed longitudinally on 255 fecal samples collected from 50 infants in the first months of life, identified significant differences in the relative levels of abundance of Klebsiella, Salmonella, Escherichia/Shigella, and Bifidobacterium in the BPD infants in a manner that was birth mode dependent. Transcriptome sequencing (RNA-Seq) analysis revealed that more than 400 genes were upregulated in infants with BPD. Genes upregulated in BPD infants were significantly enriched for functions related to red blood cell development and oxygen transport, while several immune-related pathways were downregulated. We also identified a gene expression signature consistent with an enrichment of immunosuppressive CD71+ early erythroid cells in infants with BPD. Intriguingly, genes that were correlated in their expression with the relative abundances of specific taxa in the microbiota were significantly enriched for roles in the immune system, suggesting that changes in the microbiota might influence immune gene expression systemically. IMPORTANCE Bronchopulmonary dysplasia (BPD) is a serious inflammatory condition of the lung and is the most common complication associated with preterm birth. A large body of evidence now suggests that the gut microbiota can influence immunity and inflammation systemically; however, the role of the gut microbiota in BPD has not been evaluated to date. Here, we report that there are significant differences in the gut microbiota of infants born at <29 weeks gestation and subsequently diagnosed with BPD, which are particularly pronounced when infants are stratified by birth mode. We also show that erythroid and immune gene expression levels are significantly altered in BPD infants. Interestingly, we identified an association between the composition of the microbiota and immune gene expression in blood in early life. Together, these findings suggest that the composition of the microbiota may influence the risk of developing BPD and, more generally, may shape systemic immune gene expression.


2020 ◽  
Vol 8 (3) ◽  
pp. 438 ◽  
Author(s):  
Nikolas Dovrolis ◽  
George Michalopoulos ◽  
George E. Theodoropoulos ◽  
Kostantinos Arvanitidis ◽  
George Kolios ◽  
...  

Even though anti-TNF therapy significantly improves the rates of remission in inflammatory bowel disease (IBD) patients, there is a noticeable subgroup of patients who do not respond to treatment. Dysbiosis emerges as a key factor in IBD pathogenesis. The aim of the present study is to profile changes in the gut microbiome and transcriptome before and after administration of the anti-TNF agent Infliximab (IFX) and investigate their potential to predict patient response to IFX at baseline. Mucosal biopsy samples from 20 IBD patients and nine healthy controls (HC) were examined for differences in microbiota composition (16S rRNA gene sequencing) and mucosal gene expression (RT-qPCR) at baseline and upon completion of IFX treatment, accordingly, via an in silico pipeline. Significant differences in microbiota composition were found between the IBD and HC groups. Several bacterial genera, which were found only in IBD patients and not HC, had their populations dramatically reduced after anti-TNF treatment regardless of response. Alpha and beta diversity metrics showed significant differences between our study groups. Correlation analysis revealed six microbial genera associated with differential expression of inflammation-associated genes in IFX treatment responders at baseline. This study shows that IFX treatment has a notable impact on both the gut microbial composition and the inflamed tissue transcriptome in IBD patients. Importantly, our results identify enterotypes that correlate with transcriptome changes and help differentiate IFX responders versus non-responders at baseline, suggesting that, in combination, these signatures can be an effective tool to predict anti-TNF response.


2020 ◽  
Author(s):  
Jayanth Jawahar ◽  
Alexander McCumber ◽  
Colin Lickwar ◽  
Caroline Amoroso ◽  
Sol Gomez de la Torre Canny ◽  
...  

Abstract Background: The ability of animals and their microbiomes to adapt to starvation and then restore homeostasis after refeeding is fundamental to their continued survival and symbiosis. The intestine is the primary site of nutrient absorption and microbiome interaction, however our understanding of intestinal adaptations in host transcriptional programs and microbiome composition remains limited. Additionally, few studies on starvation have investigated intestinal responses to refeeding. The zebrafish presents unique opportunities to study the effects of long-term starvation and refeeding. We used RNA sequencing and 16S rRNA gene sequencing to uncover changes in the intestinal transcriptome and microbiome of zebrafish subjected to long-term starvation and refeeding compared to continuously fed controls. Results: Starvation over 21 days led to increased diversity and altered composition in the intestinal microbiome compared to fed controls, including relative increases in Vibrio and reductions in Plesiomonas bacteria. Starvation also led to significant alterations in host gene expression in the intestine, with distinct pathways affected at early and late stages of starvation. This included increases in the expression of ribosome biogenesis genes early in starvation, followed by decreased expression of genes involved in antiviral immunity and at later stages. These effects of starvation on the host transcriptome and microbiome were within 3 days after refeeding. Comparison with published datasets identified host genes responsive to starvation as well as high-fat feeding or microbiome colonization, and predicted host transcription factors that may be involved in starvation response. Conclusions: Long-term starvation induces progressive changes in microbiome composition and host gene expression in the zebrafish intestine, and these changes are rapidly reversed after refeeding. Our identification of bacterial taxa, host genes and host pathways involved in this response provides a framework for future investigation of the physiological and ecological mechanisms underlying intestinal adaptations to food restriction.


Author(s):  
Christina L. Elling ◽  
Melissa A. Scholes ◽  
Sven-Olrik Streubel ◽  
Eric D. Larson ◽  
Todd M. Wine ◽  
...  

Otitis media (OM) is a leading cause of childhood hearing loss. Variants in FUT2, which encodes alpha-(1,2)-fucosyltransferase, were identified to increase susceptibility to OM, potentially through shifts in the middle ear (ME) or nasopharyngeal (NP) microbiotas as mediated by transcriptional changes. Greater knowledge of differences in relative abundance of otopathogens in carriers of pathogenic variants can help determine risk for OM in patients. In order to determine the downstream effects of FUT2 variation, we examined gene expression in relation to carriage of a common pathogenic FUT2 c.461G&gt;A (p.Trp154*) variant using RNA-sequence data from saliva samples from 28 patients with OM. Differential gene expression was also examined in bulk mRNA and single-cell RNA-sequence data from wildtype mouse ME mucosa after inoculation with non-typeable Haemophilus influenzae (NTHi). In addition, microbiotas were profiled from ME and NP samples of 65 OM patients using 16S rRNA gene sequencing. In human carriers of the FUT2 variant, FN1, KMT2D, MUC16 and NBPF20 were downregulated while MTAP was upregulated. Post-infectious expression in the mouse ME recapitulated these transcriptional differences, with the exception of Fn1 upregulation after NTHi-inoculation. In the NP, Candidate Division TM7 was associated with wildtype genotype (FDR-adj-p=0.009). Overall, the FUT2 c.461G&gt;A variant was associated with transcriptional changes in processes related to response to infection and with increased load of potential otopathogens in the ME and decreased commensals in the NP. These findings provide increased understanding of how FUT2 variants influence gene transcription and the mucosal microbiota, and thus contribute to the pathology of OM.


Sign in / Sign up

Export Citation Format

Share Document