vibration protection
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 68)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 5 (4) ◽  
pp. 217-226
Author(s):  
Yu. A. Zhukov ◽  
E. B. Korotkov ◽  
S. A. Matveev ◽  
N. S. Slobodzyan ◽  
O. V. Shirobokov

The work is devoted to the protection of a spacecraft from the influence of unacceptable internal vibration sources. The urgency of reducing the vibration activity on board the spacecraft to improve the accuracy of the target equipment is indicated. A particular problem of vibration protection of the spacecraft platform from a vibration source – an electric pump unit of a liquid thermal control system – is being solved. The basic requirements for electric pump unit vibration protection have been determined. Possible ways to reduce the level of vibration excited by the electric pump unit on the surface of the spacecraft fixation are considered. Particular attention is paid to such vibration protection methods as damping and vibration isolation, implemented by installing special vibration protection devices between the source (electric pump unit) and the object (spacecraft) – vibration isolators and vibration dampers. The principles of operation of vibration dampers and vibration isolators, the most common materials for vibration dampers are described. Examples of constructive solutions for linear single-axial vibration isolators are considered, recommendations for the use of promising products are developed. Particularemphasis is placed on the use of metal rubber as a material for vibration isolators. With regard to a specific design of electric pump unit, a diagram of the spatial structure of vibration isolation is proposed. Formulas for calculation are given in detail, a mathematical model of the vibration isolation system is developed. The procedure for calculating the parameters of the system has been formed. Based on the model, the maximum possible level of vibration suppression in the mid-frequency region was determined. Minimum required number of operable pixels was identified for monitoring the water surface with sufficient accuracy and reliability.


Author(s):  
В.А. Пятакович ◽  
В.Ф. Рычкова ◽  
А.П. Пурденко

Для создания виброакустической защиты судового оборудования необходимо учитывать потоки колебательной энергии, распространяющиеся от источников как через опорные и неопорные связи, так и в виде воздушного шума. В работе представлены математические модели оценки эффективности амортизирующих креплений виброактивных механизмов морских объектов по колебательной мощности, учитываемые при обучении разрабатываемой нейросетевой системы классификации морских целей. Теоретические разработки в области виброзащиты и виброизоляции во многом имеют междисциплинарный характер и опираются на методы теории механизмов и машин, теоретической механики, теории колебаний, теории управления, используются методы инфорьт мационные технологии для оценки, поиска и выбора рациональных проектно-конструкторских решений. Создание амортизирующих устройств, способных защитить объекты от вибраций и ударов и, вместе с тем, обладающих ограниченными размерами, является сложной технической проблемой. В связи с этим первостепенное значение приобретают вопросы теории и расчета адаптивных виброзащитных систем. To create vibro-acoustic protection of ship equipment, it is necessary to take into account the flows of vibrational energy propagating from sources both through support and non-support connections, and in the form of air noise. The paper presents mathematical models for evaluating the effectiveness of shock-absorbing fasteners of vibro-active mechanisms of marine objects by vibrational power, which are taken into account when training the developed neural network system for classifying marine targets. Theoretical developments in the field of vibration protection and vibration isolation are largely interdisciplinary in nature and are based on the methods of the theory of mechanisms and machines, theoretical mechanics, vibration theory, control theory, information technology methods are used to evaluate, search and select rational design solutions. The creation of shock-absorbing devices that can protect objects from vibrations and shocks and, at the same time, have limited dimensions is a complex technical problem. In this regard, the issues of the theory and calculation of adaptive vibration protection systems are of paramount importance.


2021 ◽  
pp. 084-091
Author(s):  
Gavasheli Levan ◽  
Gavasheli Anri

The article analyzes random vibrations of nonlinear mechanical systems with distributed parameters. The motion of such systems is described by nonlinear partial differential equations with corresponding initial and boundary conditions. In our case, the system as a whole is limited, so any motion can be considered as the sum of the natural oscillations of the system, i.e. in the form of an expansion of the boundary value problem in terms of own functions. The use of the theory of random processes in the calculation of mechanical systems is a prerequisite for the creation of sound design methods and the creation of effective vibration protection devices, these methods allow us to investigate dynamic processes, to determine the probabilistic characteristics of displacements of points of the system and their first two derivatives. In the work established these conditions are met, they provide effective vibration protection of the system under study with wide changes in the pass band of the frequencies of the random vibration effect, and the frequency of the disturbing force is much greater than the natural frequency of the system as a whole, in addition, with an increase in the damping capacity of the elastic-damping link of the system, the intensity of the random process significantly decreases, which in turn leads to a sharp decrease in the dynamic coefficient of the system.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012066
Author(s):  
J Jackiewicz

Abstract During the traction and braking of trains, substantial longitudinal dynamic forces might occur in couplers. The method of modeling these forces for two different electric multiple units (EMUs) is presented in this study. For the EMUs consisted of independent vehicles, each of which rests on two bogies, computer simulations were carried out. Simulations were also executed for EMUs with Jacobs bogies, which support bodies of two adjacent carriages. The dynamic modeling of vibration protection train systems includes nonlinearities.


2021 ◽  
Author(s):  
Chang-Myung Lee ◽  
Vladimir Nicholas Goverdovskiy

Design and deploy advanced vibration protection systems based on elastic composites under post-buckling, with this essential reference. Methods for designing vibration protection systems with negative and quasi-zero stiffness are formulated, explained, and demonstrated in practice. All key steps of the system design are covered, including the type and number synthesis, modelling and studying of stress-strain state under post-buckling of elastic composite designs, chaotic dynamics and stability conditions, real-time dimensioning, and active motion control. In addition to coverage of underlying theory, the use in helicopters, buses, railroad vehicles, construction equipment and agricultural machinery are included. An excellent reference for researchers and practicing engineers, as well as a tutorial for university students and professors with an interest in study, development and application of alternative methods of vibration protection anywhere.


2021 ◽  
Vol 101 (09) ◽  
pp. 454-459
Author(s):  
Anvar Ergashovich Qudratov ◽  
◽  
Nozima Shodiqulovna Raxmatullayeva ◽  

Sign in / Sign up

Export Citation Format

Share Document