bathymetric mapping
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 0)



2020 ◽  
Vol 10 (19) ◽  
pp. 6688
Author(s):  
Jianguang Shi ◽  
Mingxi Zhou

Bathymetric mapping with Autonomous Underwater Vehicles (AUVs) receives increased attentions in recent years. AUVs offer a lower operational cost and smaller carbon footprint with reduced ship usage, and they can provide higher resolution data when surveying the seabed at a closer distance if compared to ships. However, advancements are still needed to improve the data quality of AUV-based surveys. Unlike mobile robots with deterministic mapping performance, multibeam sonars used in AUV-based bathymetric mapping often yields inconsistent swath width due to the varied seabed elevation and surficial properties. As a result, mapping voids may exist between planned lawnmower transects. Although this could be solved by planning closer lawnmower paths, mission time increases proportionally. Therefore, an onboard path planner is demanded to assure the defined survey objective, i.e., coverage rate. Here in this paper, we present a new data-driven coverage path planning (CPP) method, in which the vehicle automatically updates the waypoints intermittently based on an objective function constructed using the information about the exploration preference, sonar performance, and coverage efficiency. The goal of the proposed method is to plan a cost-effective path on-the-fly to obtain high quality mapping result meeting the requirements in coverage rate and uncertainty. The proposed CPP method has been evaluated in a simulated environment with a 6DOF REMUS AUV model and a realistic seafloor topography. A series of trials has been conducted to investigate the performance affected by the parameters in the objective function. We also compared the proposed method with traditional lawnmower and spiral paths. The results show that the weight assignment in the objective function is critical as they affect the overall survey performance. With proper weight settings, the AUV yields better survey performance, coverage rate and coverage efficiency, compared to traditional approaches. Moreover, the proposed method can be easily adjusted or modified to achieve different coverage goals, such as rapid data gathering of the entire region, survey of irregular workspace, or maintaining real time path planning.



2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Takahiko Inoue ◽  
Kohsaku Arai

Abstract Sub-bottom profiling (SBP) surveys and bathymetric mapping conducted off the shore of Miyako-jima, which belongs to the southern Ryukyus in the Ryukyu Island Arc, have revealed the presence of mound-shaped structures 3–8 m high and 50–120 m wide at depths of 70–100 m. The SBP surveys showed that the mounds possess strong distinct, convex upward reflector shapes at the top, which we interpret as submerged reefs and reefal sediments. Additionally, modern stratified sediment layers that cover these mound-shaped structures indicate that those reefs began forming and advancing shoreward in a back-stepping fashion as a result of sea-level rise. An analysis of the mound distribution shown by SBP and multibeam echo sounding (MBES) surveys suggest that they might have been formed during the lowstand stage of sea-level change, which includes the Last Glacial Period, because the distribution of these mounds is limited to water depths of 70 to 100 m, deeper than where present-day reefs grow. The SBP images hint that such high-resolution seismic profiles, accompanied by detailed bathymetric mapping off the reefal area, have the potential to provide effective indicators of not only coral reef paleoenvironment development, but also the tectonic setting of this offshore area.



2020 ◽  
Author(s):  
Takahiko Inoue ◽  
Kohsaku Arai

Abstract Sub-bottom profiling (SBP) surveys and bathymetric mapping conducted off the shore of Miyako-jima, which belongs to the southern Ryukyus in the Ryukyu Island Arc, have revealed the presence of mound-shaped structures 3-8 m high and 50-120 m wide at depths of 70-100 m. The SBP surveys showed that the mounds possess strong distinct, convex upward reflector shapes at the top, which we interpret as submerged reefs and reefal sediments. Additionally, modern stratified sediment layers that cover these mound-shaped structures indicate that those reefs began forming and advancing shoreward in a back-stepping fashion as a result of sea-level rise. An analysis of the mound distribution shown by SBP and multibeam echo sounding (MBES) surveys suggest that they might have been formed during the lowstand stage of sea-level change, which includes the Last Glacial Period, because the distribution of these mounds is limited to water depths of 70 m to 100 m, deeper than where present-day reefs grow. The SBP images hint that such high-resolution seismic profiles, accompanied by detailed bathymetric mapping off the reefal area, have the potential to provide effective indicators of not only coral reef paleoenvironment development, but also the tectonic setting of this offshore area.



2020 ◽  
Author(s):  
Takahiko Inoue ◽  
Kohsaku Arai

Abstract Sub-bottom profiling (SBP) surveys and bathymetric mapping conducted off the shore of Miyako-jima, which belongs to the southern Ryukyus in the Ryukyu Island Arc, have revealed the presence of mound-shaped structures 3-8 m high and 50-120 m wide at depths ranging from 70-100 m. The SBP surveys showed that the mounds possess strong distinct, convex upward reflector shapes at the top, which we interpret as submerged reefs and reefal sediments. Additionally, modern stratified sediment layers that cover these mound-shaped structures indicate that those reefs began forming and advancing shoreward in a back-stepping fashion as a result of sea level rise. An analysis of the mound distribution shown by SBP and multibeam echo sounding (MBES) surveys suggest that they might have been formed during the lowstand stage of sea level change, which includes the last glacial period, because the distribution of these mounds is limited to water depths of 70 m to 100 m, which are deeper than where present-day reefs grow. The SBP images hint that such high-resolution seismic profiles, accompanied by detailed bathymetric mapping off the reefal area, have the potential to provide effective indicators of not only coral reef paleoenvironment development, but also the tectonic setting of this offshore area.



Sign in / Sign up

Export Citation Format

Share Document