scholarly journals New Findings on Submerged Patch Reefs and Reefal Carbonate Rocks at Water Depths of 70-100 meters on the Insular Shelf off Miyako-jima, Southern Ryukyus, Japan

2020 ◽  
Author(s):  
Takahiko Inoue ◽  
Kohsaku Arai

Abstract Sub-bottom profiling (SBP) surveys and bathymetric mapping conducted off the shore of Miyako-jima, which belongs to the southern Ryukyus in the Ryukyu Island Arc, have revealed the presence of mound-shaped structures 3-8 m high and 50-120 m wide at depths of 70-100 m. The SBP surveys showed that the mounds possess strong distinct, convex upward reflector shapes at the top, which we interpret as submerged reefs and reefal sediments. Additionally, modern stratified sediment layers that cover these mound-shaped structures indicate that those reefs began forming and advancing shoreward in a back-stepping fashion as a result of sea-level rise. An analysis of the mound distribution shown by SBP and multibeam echo sounding (MBES) surveys suggest that they might have been formed during the lowstand stage of sea-level change, which includes the Last Glacial Period, because the distribution of these mounds is limited to water depths of 70 m to 100 m, deeper than where present-day reefs grow. The SBP images hint that such high-resolution seismic profiles, accompanied by detailed bathymetric mapping off the reefal area, have the potential to provide effective indicators of not only coral reef paleoenvironment development, but also the tectonic setting of this offshore area.

2020 ◽  
Author(s):  
Takahiko Inoue ◽  
Kohsaku Arai

Abstract Sub-bottom profiling (SBP) surveys and bathymetric mapping conducted off the shore of Miyako-jima, which belongs to the southern Ryukyus in the Ryukyu Island Arc, have revealed the presence of mound-shaped structures 3-8 m high and 50-120 m wide at depths ranging from 70-100 m. The SBP surveys showed that the mounds possess strong distinct, convex upward reflector shapes at the top, which we interpret as submerged reefs and reefal sediments. Additionally, modern stratified sediment layers that cover these mound-shaped structures indicate that those reefs began forming and advancing shoreward in a back-stepping fashion as a result of sea level rise. An analysis of the mound distribution shown by SBP and multibeam echo sounding (MBES) surveys suggest that they might have been formed during the lowstand stage of sea level change, which includes the last glacial period, because the distribution of these mounds is limited to water depths of 70 m to 100 m, which are deeper than where present-day reefs grow. The SBP images hint that such high-resolution seismic profiles, accompanied by detailed bathymetric mapping off the reefal area, have the potential to provide effective indicators of not only coral reef paleoenvironment development, but also the tectonic setting of this offshore area.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Takahiko Inoue ◽  
Kohsaku Arai

Abstract Sub-bottom profiling (SBP) surveys and bathymetric mapping conducted off the shore of Miyako-jima, which belongs to the southern Ryukyus in the Ryukyu Island Arc, have revealed the presence of mound-shaped structures 3–8 m high and 50–120 m wide at depths of 70–100 m. The SBP surveys showed that the mounds possess strong distinct, convex upward reflector shapes at the top, which we interpret as submerged reefs and reefal sediments. Additionally, modern stratified sediment layers that cover these mound-shaped structures indicate that those reefs began forming and advancing shoreward in a back-stepping fashion as a result of sea-level rise. An analysis of the mound distribution shown by SBP and multibeam echo sounding (MBES) surveys suggest that they might have been formed during the lowstand stage of sea-level change, which includes the Last Glacial Period, because the distribution of these mounds is limited to water depths of 70 to 100 m, deeper than where present-day reefs grow. The SBP images hint that such high-resolution seismic profiles, accompanied by detailed bathymetric mapping off the reefal area, have the potential to provide effective indicators of not only coral reef paleoenvironment development, but also the tectonic setting of this offshore area.


1985 ◽  
Vol 24 (2) ◽  
pp. 187-196 ◽  
Author(s):  
R.N. Oldale

Seismic profiles across the southwest end of Jeffreys Ledge, a bathymetric high north of Cape Ann, Massachusetts, reveal two end moraines. The moraines overlie upper Wisconsinan glacialmarine silty clay and are composed mostly of subaqueous ice-contact deposits and outwash. They were formed below sea level in water depths of as much as 120 m during fluctuations of a calving ice front. The moraines are late Wisconsinan in age and were formed after the Cambridge readvance, about 14,000 yr B.P., and before the Kennebunk readvance, about 13,000 yr B.P. They represent fluctuations of the ice front during overall retreat of Laurentide ice from the Gulf of Maine and New England.


1977 ◽  
Vol 17 (1) ◽  
pp. 3 ◽  
Author(s):  
Derk Jongsma ◽  
Peter Petkovic

The Naturaliste Plateau is a broad, relatively flat feature lying at a depth below sea level of around 2500 m off the continental margin of southwest Australia. A northerly trending trough with water depths of 3000 to 4000 m separates the Plateau from the continental shelf. Reflection seismic profiles over the Plateau reveal 500 to 1000 m thicknesses of post-Neocomian sediments on the Plateau and up to 2000 m thicknesses in the Trough. An erosional unconformity which is thought to be of Neocomian age separates folded, faulted sediments and intruded metamorphic and igneous basement from the overlying sediments. Deep sea drilling has shown the upper section as being composed of deep-sea clays and oozes. Several hiatuses occur in this upper section.Magnetic anomalies over the Plateau are intense and have magnitudes of up to 850 nT. The anomalies are much more subdued over the Trough. Depths to the bodies causing the magnetic anomalies are estimated to be between zero and three km below the Neocomian unconformity. The gravity field over the Plateau indicates that the crust is of intermediate thickness. A phase of rifting in the Early Cretaceous gave rise to a gently sloping northern margin, whereas rifting in the Eocene produced a steep, faulted, southern margin. The Plateau appears to have been at its present depths since the Early Cretaceous. Prospectivity for petroleum over the Plateau and Trough is poor.


2021 ◽  
Author(s):  
Alessandra Lanzoni ◽  
Anna Del Ben ◽  
Edy Forlin ◽  
Federica Donda ◽  
Massimo Zecchin

<p>The Adriatic basin represents one of several restricted basins located in the Mediterranean Area. It consists of the foreland of three different orogenic belts: the Dinarides to the East, active during the Eocene, the Southern Alps to the North, active since the Cretaceous time, and the Apennines to the West, active since the Paleogene. The Apennines had a primary role during the Messinian Salinity Crisis (MSC), conditioning the connection between the Adriatic basin, the Ionian basin, and the proto-Tyrrhenian basin. During the Messinian, the present Adriatic Sea was characterized by shallow water domains, where gypsum evaporites initially deposited and often successively incised or outcropped. </p><p>In the past 50 years, a massive dataset, composed of 2D multichannel seismic data and boreholes, was collected, covering almost the whole Adriatic basin in the Italian offshore. In this work, we interpreted the Plio-Quaternary base (PQb), based on available public datasets and on seismic profiles present in literature, which provided regional information from the northernmost Trieste Gulf (Northern Adriatic Sea) to the Otranto Channel (Southern Adriatic Sea). Here, we propose the PQb time-structural map, obtained by analyzing more than 600 seismic profiles. The PQb represents both the Messinian erosion and/or the top of the Messinian evaporites. It is characterized by a high-amplitude reflector, commonly called “horizon M” in the old literature. Principal findings concerning the Messinian event are summarized as below: </p><p>-The Northern Adriatic (Gulf of Trieste, Gulf of Venice, Po delta, Kvarner Area) reveals widespread channelized systems produced by the initial decrease of the sea level, followed by subaerial erosion, related to further sea level decrease. High-grade erosion involved the nearby Adriatic carbonate platform in the Croatian offshore, where deep valleys, filled with Last Messinian or post- Messinian sediments, cut through the limestones.</p><p>-The Central Adriatic (from the Po delta to the Gargano Promontory) displays a higher evaporites accumulation than the northern sector. Meanwhile, the Mid-Adriatic Ridge was already developing, along with the Apennine Chain, which was in a westernmost position. Erosional features in the deeper area are related to channelized systems, which followed the evaporites deposition. Meanwhile, also the Mid-Adriatic Ridge was affected by erosion.</p><p>-The Southern Adriatic (from the Gargano Promontory to the Otranto Channel) is characterized by the Mesozoic Apulia carbonate platform, covered by a thin Cenozoic sequence affected by subaerial erosion or non-deposition. The platform margin and the slope leading to the deepest South Adriatic basin, where a Messinian gypsum layer, also recorded in the Albanian and Croatian offshore, shows a lower level of upper erosion.</p><p>In general, we notice strongly variable thicknesses of the horizon M, which is related to submarine erosion (channels), subaerial erosion (discontinuous surfaces), non-deposition (possible unconformity), and tilting toward the surrounding chains (deepening horizons). In this work, we evaluate these different components from a regional point of view.  </p>


2021 ◽  
Vol 9 (1) ◽  
pp. 70
Author(s):  
Pareng Rengi ◽  
Ulil Amri ◽  
Tomi Ramadona ◽  
Ediar Usman ◽  
Bustari Bustari

<p>Aruah Islands is located on an international shipping line adjacent to Malaysia. The important aspect in borderline management is the maritime resource potential, one of which is sea minerals. In order to dig the information about marine mineral resources in Aruah Islands, a high-resolution seismic reflection with low frequency was applied, which capable to detect the depth and identify the sedimentary layers clearly and accurately. The depth of water and sediment layers were detected using an echosounder, reason Navi sound type 210 with a tow fish 100 kHz and shallow seismic boomer with a single channel type and wave energy 200 Joules. Gravity core and grab sampler were used to collect the sediment sample. There were three stages on seismic interpretation: sequence analysis, facies analysis, and reflection character identification. Furthermore, sediments containing coarse sand-sized minerals were observed using a microscope. The measurement result of Aruah Islands water depth was ranging from 0-80 m, the deepest part is on the Northern of Batu Mandi island which was 80 m depth. Seismic profiles indicated that the upper layer of tertiary sedimentary as the youngest rocks. Based on sediment thickness, the thickest area was found on the Western (approx. 50 m) and the Northern (approx. 32 m). In line with the island’s Southern part condition, which was plain or shallow sea exposure, the Southeastern island sediment thickness ranged only about 10-18 m. Generally, based on the analyzed sediment sample, quartz was the main mineral found, which was 60-80% of the composition. Other minerals were zircon, tin, hematite, magnetite, limonite, biotite, and dolomite.</p>


2021 ◽  
pp. 1-64
Author(s):  
Oussama Abidi ◽  
Kawthar Sebei ◽  
Adnen Amiri ◽  
Haifa Boussiga ◽  
Imen Hamdi Nasr ◽  
...  

The Middle to Upper Eocene series are characterized by multiple hiatuses related to erosion, non-deposition or condensed series in the Cap Bon and Gulf of Hammamet provinces. We performed an integrated study taking advantage from surface and subsurface geology, faunal content, borehole logs, electrical well logs, vertical seismic profiles and surface seismic sections. Calibrated seismic profiles together with borehole data analysis reveal unconformities with deep erosion, pinchouts, normal faulting and basin inversion which are dated Campanian, intra-Lutetian and Priabonian compressive phases; these events were also described at the regional scale in Tunisia. Tectonics, sea level fluctuations and climate changes closely controlled the depositional process during the Middle to Upper Eocene time. The depositional environment ranges from internal to outer platform separated by an inherited paleo-high. We determine eight third order sequences characterizing the interaction between tectonic pulsations, sea level changes and the developed accommodation space within the Middle to Upper Eocene interval. We correlate the obtained results of the Cap Bon-Gulf of Hammamet provinces with the published global charts of sea-level changes and we find a good correspondence across third order cycles. Model-based 3D inversion proved to be a solution to model the lateral and vertical lithological distribution of the Middle to Upper Eocene series.


2021 ◽  
Author(s):  
Kathrine Maxwell ◽  
Hildegard Westphal ◽  
Alessio Rovere

&lt;p&gt;The Last Interglacial (LIG), as well as other warmer periods in the Earth&amp;#8217;s geologic history, provides an analogue for predicted warming conditions in the near future. Analysis of sea-level indicators during this period is important in constraining regional drivers of relative sea-level change (RSL) and in modeling future trajectories of sea-level rise. In southeast Asia, several studies have been done to examine LIG sea-level indicators such as coral reef terraces and tidal notches. A synthesis of the state-of-the-art of the LIG RSL indicators in the region, meanwhile, has yet to be done. We reviewed over 50 published works on the LIG RSL indicators in southeast Asia and used the framework of the World Atlas of Last Interglacial Shorelines (WALIS) in building a standardized database of previously published LIG RSL indicators in the region. In total, we identified 38 unique RSL indicators and inserted almost 140 ages in the database. Available data from Indonesia, the Philippines, and East Timor points to variable elevation of sea-level indicators during the LIG highlighting the complex tectonic setting of this region. Variable uplift rates (from as low as 0.02 to as high as 1.1 m/ka) were reported in the study areas echoing various collision and subduction processes influencing these sites. Although several age constraints and elevation measurements have been provided by these studies, more data is still needed to shed more light on the RSL changes in the region. With this effort under the WALIS framework, we hope to identify gaps in the LIG RSL indicators literature in SE Asia and recognize potential areas that can be visited for future work. We also hope that this initiative will help us further understand the different drivers of past sea-level changes in SE Asia and will provide inputs for projections of sea-level change in the future.&lt;/p&gt;


1976 ◽  
Vol 13 (8) ◽  
pp. 1082-1092 ◽  
Author(s):  
Lewis H. King

A side-scan sonar survey along the western bank of the Laurentian Channel and on the western Grand Banks revealed the occurrence of iceberg furrows that are probably of Late Pleistocene age. The occurrence of furrows in the Gulf of St. Lawrence is significant in that it helps to date iceberg furrows along the northeast Newfoundland–Labrador margin of the northwest Atlantic, provides data on the history of deglaciation of the offshore area of the Atlantic Provinces, provides a means of evaluating sea level curves, and provides additional evidence for the broad regional extent of the Late Pleistocene shoreline at 115 to 120 m.


2019 ◽  
Vol 11 (14) ◽  
pp. 1634 ◽  
Author(s):  
Christopher E. Parrish ◽  
Lori A. Magruder ◽  
Amy L. Neuenschwander ◽  
Nicholas Forfinski-Sarkozi ◽  
Michael Alonzo ◽  
...  

NASA’s Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was launched in September, 2018. The satellite carries a single instrument, ATLAS (Advanced Topographic Laser Altimeter System), a green wavelength, photon-counting lidar, enabling global measurement and monitoring of elevation with a primary focus on the cryosphere. Although bathymetric mapping was not one of the design goals for ATLAS, pre-launch work by our research team showed the potential to map bathymetry with ICESat-2, using data from MABEL (Multiple Altimeter Beam Experimental Lidar), NASA’s high-altitude airborne ATLAS emulator, and adapting the laser-radar equation for ATLAS specific parameters. However, many of the sensor variables were only approximations, which limited a full assessment of the bathymetric mapping capabilities of ICESat-2 during pre-launch studies. Following the successful launch, preliminary analyses of the geolocated photon returns have been conducted for a number of coastal sites, revealing several salient examples of seafloor detection in water depths of up to ~40 m. The geolocated seafloor photon returns cannot be taken as bathymetric measurements, however, since the algorithm used to generate them is not designed to account for the refraction that occurs at the air–water interface or the corresponding change in the speed of light in the water column. This paper presents the first early on-orbit validation of ICESat-2 bathymetry and quantification of the bathymetric mapping performance of ATLAS using data acquired over St. Thomas, U.S. Virgin Islands. A refraction correction, developed and tested in this work, is applied, after which the ICESat-2 bathymetry is compared against high-accuracy airborne topo-bathymetric lidar reference data collected by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). The results show agreement to within 0.43—0.60 m root mean square error (RMSE) over 1 m grid resolution for these early on-orbit data. Refraction-corrected bottom return photons are then inspected for four coastal locations around the globe in relation to Visible Infrared Imaging Radiometer Suite (VIIRS) Kd(490) data to empirically determine the maximum depth mapping capability of ATLAS as a function of water clarity. It is demonstrated that ATLAS has a maximum depth mapping capability of nearly 1 Secchi in depth for water depths up to 38 m and Kd(490) in the range of 0.05–0.12 m−1. Collectively, these results indicate the great potential for bathymetric mapping with ICESat-2, offering a promising new tool to assist in filling the global void in nearshore bathymetry.


Sign in / Sign up

Export Citation Format

Share Document