dirichlet data
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 4 (2) ◽  
pp. 1-29
Author(s):  
Juan Pablo Borthagaray ◽  
◽  
Wenbo Li ◽  
Ricardo H. Nochetto ◽  
◽  
...  

<abstract><p>We discuss computational and qualitative aspects of the fractional Plateau and the prescribed fractional mean curvature problems on bounded domains subject to exterior data being a subgraph. We recast these problems in terms of energy minimization, and we discretize the latter with piecewise linear finite elements. For the computation of the discrete solutions, we propose and study a gradient flow and a Newton scheme, and we quantify the effect of Dirichlet data truncation. We also present a wide variety of numerical experiments that illustrate qualitative and quantitative features of fractional minimal graphs and the associated discrete problems.</p></abstract>


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Phan Xuan Thanh

AbstractA novel inverse source problem concerning the determination of a term in the right-hand side of parabolic equations from boundary observation is investigated. The observation is given by an imprecise Dirichlet data on some part of the boundary. The unknown heat source is sought as a function depending on both space and time variables with an a priori information. The problem is reformulated as an optimal control problem with a Tikhonov regularization term. The gradient of the functional is derived via an adjoint problem. The space-time discretization approach is employed which allows the use of general space-time finite elements. The convergence of the approach is proved. Some numerical examples are presented for showing the efficiency of the approach.


Filomat ◽  
2020 ◽  
Vol 34 (6) ◽  
pp. 1795-1807
Author(s):  
Lijuan Liu

We consider the fractional Laplacian with positive Dirichlet data { (-?)?/2 u = ?up in ?, u > 0 in ?, u = ? in Rn\?, where p > 1,0 < ? < min{2,n}, ? ? Rn is a smooth bounded domain, ? is a nonnegative function, positive somewhere and satisfying some other conditions. We prove that there exists ?* > 0 such that for any 0 < ? < ?*, the problem admits at least one positive classical solution; for ? > ?*, the problem admits no classical solution. Moreover, for 1 < p ? n+?/n-?, there exists 0 < ?? ? ?* such that for any 0 < ? < ??, the problem admits a second positive classical solution. From the results obtained, we can see that the existence results of the fractional Laplacian with positive Dirichlet data are quite different from the fractional Laplacian with zero Dirichlet data.


2019 ◽  
Vol 16 (02) ◽  
pp. 379-400 ◽  
Author(s):  
Artur Alho ◽  
Grigorios Fournodavlos ◽  
Anne T. Franzen

We consider the wave equation, [Formula: see text], in fixed flat Friedmann–Lemaître–Robertson–Walker and Kasner spacetimes with topology [Formula: see text]. We obtain generic blow up results for solutions to the wave equation toward the Big Bang singularity in both backgrounds. In particular, we characterize open sets of initial data prescribed at a spacelike hypersurface close to the singularity, which give rise to the solutions that blow up in an open set of the Big Bang hypersurface [Formula: see text]. The initial data sets are characterized by the condition that the Neumann data should dominate, in an appropriate [Formula: see text]-sense, up to two spatial derivatives of the Dirichlet data. For these initial configurations, the [Formula: see text] norms of the solutions blow up toward the Big Bang hypersurfaces of FLRW and Kasner with inverse polynomial and logarithmic rates, respectively. Our method is based on deriving suitably weighted energy estimates in physical space. No symmetries of solutions are assumed.


2019 ◽  
Vol 150 (4) ◽  
pp. 2083-2115 ◽  
Author(s):  
Miguel Angel Navarro ◽  
Justino Sánchez

AbstractWe consider semistable, radially symmetric and increasing solutions of Sk(D2u) = g(u) in the unit ball of ℝn, where Sk(D2u) is the k-Hessian operator of u and g ∈ C1 is a general positive nonlinearity. We establish sharp pointwise estimates for such solutions in a proper weighted Sobolev space, which are optimal and do not depend on the specific nonlinearity g. As an application of these results, we obtain pointwise estimates for the extremal solution and its derivatives (up to order three) of the equation Sk(D2u) = λg(u), posed in B1, with Dirichlet data $u\arrowvert _{B_1}=0$, where g is a continuous, positive, nonincreasing function such that lim t→−∞g(t)/|t|k = +∞.


2019 ◽  
Vol 14 (2) ◽  
pp. 204
Author(s):  
Eduardo Hernandez-Montero ◽  
Andres Fraguela-Collar ◽  
Jacques Henry

The inverse ECG problem is set as a boundary data completion for the Laplace equation: at each time the potential is measured on the torso and its normal derivative is null. One aims at reconstructing the potential on the heart. A new regularization scheme is applied to obtain an optimal regularization strategy for the boundary data completion problem. We consider the ℝn+1domain Ω. The piecewise regular boundary of Ω is defined as the union∂Ω = Γ1∪ Γ0∪ Σ, where Γ1and Γ0are disjoint, regular, andn-dimensional surfaces. Cauchy boundary data is given in Γ0, and null Dirichlet data in Σ, while no data is given in Γ1. This scheme is based on two concepts: admissible output data for an ill-posed inverse problem, and the conditionally well-posed approach of an inverse problem. An admissible data is the Cauchy data in Γ0corresponding to an harmonic function inC2(Ω) ∩H1(Ω). The methodology roughly consists of first characterizing the admissible Cauchy data, then finding the minimum distance projection in theL2-norm from the measured Cauchy data to the subset of admissible data characterized by givena prioriinformation, and finally solving the Cauchy problem with the aforementioned projection instead of the original measurement.


2018 ◽  
Vol 19 (5) ◽  
pp. 1573-1600
Author(s):  
Yavar Kian

We consider the unique recovery of a non-compactly supported and non-periodic perturbation of a Schrödinger operator in an unbounded cylindrical domain, also called waveguide, from boundary measurements. More precisely, we prove recovery of a general class of electric potentials from the partial Dirichlet-to-Neumann map, where the Dirichlet data is supported on slightly more than half of the boundary and the Neumann data is taken on the other half of the boundary. We apply this result in different contexts including recovery of some general class of non-compactly supported coefficients from measurements on a bounded subset and recovery of an electric potential, supported on an unbounded cylinder, of a Schrödinger operator in a slab.


Sign in / Sign up

Export Citation Format

Share Document