accessory medulla
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Elizabeth C. Marin ◽  
Ruairí J.V. Roberts ◽  
Laurin Büld ◽  
Maria Theiss ◽  
Markus W. Pleijzier ◽  
...  

SUMMARYAnimals exhibit innate and learned preferences for temperature and humidity – conditions critical for their survival and reproduction. Here, we leveraged a whole adult brain electron microscopy volume to study the circuitry associated with antennal thermosensory and hygrosensory neurons, which target specific ventroposterior (VP) glomeruli in the Drosophila melanogaster antennal lobe. We have identified two new VP glomeruli, in addition to the five known ones, and the projection neurons (VP PNs) that relay VP information to higher brain centres, including the mushroom body and lateral horn, seats of learned and innate olfactory behaviours, respectively. Focussing on the mushroom body lateral accessory calyx (lACA), a known thermosensory neuropil, we present a comprehensive connectome by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. We find that a few lACA-associated mushroom body intrinsic neurons (Kenyon cells) solely receive thermosensory inputs, while most receive additional olfactory and thermo- or hygrosensory PN inputs in the main calyx. Unexpectedly, we find several classes of lACA-associated neurons that form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a general hub for thermosensory circuitry. For example, we find DN1 pacemaker neurons that link the lACA to the accessory medulla, likely mediating temperature-based entrainment of the circadian clock. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron that receives input mainly from dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor neurons in the nerve cord. (249)HIGHLIGHTSTwo novel thermo/hygrosensory glomeruli in the fly antennal lobeFirst complete set of thermosensory and hygrosensory projection neuronsFirst connectome for a thermosensory centre, the lateral accessory calyxNovel third order neurons, including a link to the circadian clock


2019 ◽  
Vol 3 (4) ◽  
pp. 944-968 ◽  
Author(s):  
Pablo Rojas ◽  
Jenny A. Plath ◽  
Julia Gestrich ◽  
Bharath Ananthasubramaniam ◽  
Martin E. Garcia ◽  
...  

The circadian clock of the nocturnal Madeira cockroach is located in the accessory medulla, a small nonretinotopic neuropil in the brain’s visual system. The clock comprises about 240 neurons that control rhythms in physiology and behavior such as sleep-wake cycles. The clock neurons contain an abundant number of partly colocalized neuropeptides, among them pigment-dispersing factor (PDF), the insects’ most important circadian coupling signal that controls sleep-wake rhythms. We performed long-term loose-patch clamp recordings under 12:12-hr light-dark cycles in the cockroach clock in vivo. A wide range of timescales, from milliseconds to seconds, were found in spike and field potential patterns. We developed a framework of wavelet transform–based methods to detect these multiscale electrical events. We analyzed frequencies and patterns of events with interesting dynamic features, such as mixed-mode oscillations reminiscent of sharp-wave ripples. Oscillations in the beta/gamma frequency range (20–40 Hz) were observed to rise at dawn, when PDF is released, peaking just before the onset of locomotor activity of the nocturnal cockroach. We expect that in vivo electrophysiological recordings combined with neuropeptide/antagonist applications and behavioral analysis will determine whether specific patterns of electrical activity recorded in the network of the cockroach circadian clock are causally related to neuropeptide-dependent control of behavior.


2011 ◽  
Vol 26 (6) ◽  
pp. 507-517 ◽  
Author(s):  
Hongying Wei ◽  
Monika Stengl

Pigment-dispersing factor–immunoreactive neurons anterior to the accessory medulla (aPDFMes) in the optic lobes of insects are circadian pacemaker neurons in cockroaches and fruit flies. The authors examined whether any of the aPDFMes of the cockroach Leucophaea maderae are sensitive to changes in period and photoperiod of light/dark (LD) cycles as a prerequisite to adapt to changes in external rhythms. Cockroaches were raised in LD cycles of 11:11, 13:13, 12:12, 6:18, or 18:6 h, and the brains of the adults were examined with immunocytochemistry employing antisera against PDF and orcokinin. Indeed, in 11:11 LD cycles, only the number of medium-sized aPDFMes specifically decreased, while it increased in 13:13. In addition, 18:6 LD cycles increased the number of large- and medium-sized aPDFMes, as well as the posterior pPDFMes, while 6:18 LD cycles only decreased the number of medium-sized aPDFMes. Furthermore, PDF-immunoreactive fibers in the anterior optic commissure and orcokinin-immunoreactive fibers in both the anterior and posterior optic commissures were affected by different lengths of light cycles. Thus, apparently different groups of the PDFMes, most of all the medium-sized aPDFMes, which colocalize orcokinin, respond to changes in period and photoperiod and could possibly allow for the adjustment to different photoperiods.


2006 ◽  
Vol 95 (3) ◽  
pp. 1996-2002 ◽  
Author(s):  
Nils-Lasse Schneider ◽  
Monika Stengl

The temporal organization of physiological and behavioral states is controlled by circadian clocks in apparently all eukaryotic organisms. In the cockroach Leucophaea maderae lesion and transplantation studies located the circadian pacemaker in the accessory medulla (AMe). The AMe is densely innervated by γ-aminobutyric acid (GABA)–immunoreactive and peptidergic neurons, among them the pigment-dispersing factor immunoreactive circadian pacemaker candidates. The large majority of cells of the cockroach AMe spike regularly and synchronously in the gamma frequency range of 25–70 Hz as a result of synaptic and nonsynaptic coupling. Although GABAergic coupling forms assemblies of phase-locked cells, in the absence of synaptic release the cells remain synchronized but fire now at a stable phase difference. To determine whether these coupling mechanisms of AMe neurons, which are independent of synaptic release, are based on electrical synapses between the circadian pacemaker cells the gap-junction blockers halothane, octanol, and carbenoxolone were used in the presence and absence of synaptic transmission. Here, we show that different populations of AMe neurons appear to be coupled by gap junctions to maintain synchrony at a stable phase difference. This synchronization by gap junctions is a prerequisite to phase-locked assembly formation by synaptic interactions and to synchronous gamma-type action potential oscillations within the circadian clock.


Sign in / Sign up

Export Citation Format

Share Document