scholarly journals SDP-Based Bounds for the Quadratic Cycle Cover Problem via Cutting-Plane Augmented Lagrangian Methods and Reinforcement Learning

Author(s):  
Frank de Meijer ◽  
Renata Sotirov

We study the quadratic cycle cover problem (QCCP), which aims to find a node-disjoint cycle cover in a directed graph with minimum interaction cost between successive arcs. We derive several semidefinite programming (SDP) relaxations and use facial reduction to make these strictly feasible. We investigate a nontrivial relationship between the transformation matrix used in the reduction and the structure of the graph, which is exploited in an efficient algorithm that constructs this matrix for any instance of the problem. To solve our relaxations, we propose an algorithm that incorporates an augmented Lagrangian method into a cutting-plane framework by utilizing Dykstra’s projection algorithm. Our algorithm is suitable for solving SDP relaxations with a large number of cutting-planes. Computational results show that our SDP bounds and efficient cutting-plane algorithm outperform other QCCP bounding approaches from the literature. Finally, we provide several SDP-based upper bounding techniques, among which is a sequential Q-learning method that exploits a solution of our SDP relaxation within a reinforcement learning environment. Summary of Contribution: The quadratic cycle cover problem (QCCP) is the problem of finding a set of node-disjoint cycles covering all the nodes in a graph such that the total interaction cost between successive arcs is minimized. The QCCP has applications in many fields, among which are robotics, transportation, energy distribution networks, and automatic inspection. Besides this, the problem has a high theoretical relevance because of its close connection to the quadratic traveling salesman problem (QTSP). The QTSP has several applications, for example, in bioinformatics, and is considered to be among the most difficult combinatorial optimization problems nowadays. After removing the subtour elimination constraints, the QTSP boils down to the QCCP. Hence, an in-depth study of the QCCP also contributes to the construction of strong bounds for the QTSP. In this paper, we study the application of semidefinite programming (SDP) to obtain strong bounds for the QCCP. Our strongest SDP relaxation is very hard to solve by any SDP solver because of the large number of involved cutting-planes. Because of that, we propose a new approach in which an augmented Lagrangian method is incorporated into a cutting-plane framework by utilizing Dykstra’s projection algorithm. We emphasize an efficient implementation of the method and perform an extensive computational study. This study shows that our method is able to handle a large number of cuts and that the resulting bounds are currently the best QCCP bounds in the literature. We also introduce several upper bounding techniques, among which is a distributed reinforcement learning algorithm that exploits our SDP relaxations.

Author(s):  
Jingmin Xia ◽  
Patrick E. Farrell ◽  
Florian Wechsung

AbstractWe propose a robust and efficient augmented Lagrangian-type preconditioner for solving linearizations of the Oseen–Frank model arising in nematic and cholesteric liquid crystals. By applying the augmented Lagrangian method, the Schur complement of the director block can be better approximated by the weighted mass matrix of the Lagrange multiplier, at the cost of making the augmented director block harder to solve. In order to solve the augmented director block, we develop a robust multigrid algorithm which includes an additive Schwarz relaxation that captures a pointwise version of the kernel of the semi-definite term. Furthermore, we prove that the augmented Lagrangian term improves the discrete enforcement of the unit-length constraint. Numerical experiments verify the efficiency of the algorithm and its robustness with respect to problem-related parameters (Frank constants and cholesteric pitch) and the mesh size.


2020 ◽  
Vol 14 ◽  
pp. 174830262097353
Author(s):  
Noppadol Chumchob ◽  
Ke Chen

Variational methods for image registration basically involve a regularizer to ensure that the resulting well-posed problem admits a solution. Different choices of regularizers lead to different deformations. On one hand, the conventional regularizers, such as the elastic, diffusion and curvature regularizers, are able to generate globally smooth deformations and generally useful for many applications. On the other hand, these regularizers become poor in some applications where discontinuities or steep gradients in the deformations are required. As is well-known, the total (TV) variation regularizer is more appropriate to preserve discontinuities of the deformations. However, it is difficult in developing an efficient numerical method to ensure that numerical solutions satisfy this requirement because of the non-differentiability and non-linearity of the TV regularizer. In this work we focus on computational challenges arising in approximately solving TV-based image registration model. Motivated by many efficient numerical algorithms in image restoration, we propose to use augmented Lagrangian method (ALM). At each iteration, the computation of our ALM requires to solve two subproblems. On one hand for the first subproblem, it is impossible to obtain exact solution. On the other hand for the second subproblem, it has a closed-form solution. To this end, we propose an efficient nonlinear multigrid (NMG) method to obtain an approximate solution to the first subproblem. Numerical results on real medical images not only confirm that our proposed ALM is more computationally efficient than some existing methods, but also that the proposed ALM delivers the accurate registration results with the desired property of the constructed deformations in a reasonable number of iterations.


Author(s):  
Christian Kanzow ◽  
Andreas B. Raharja ◽  
Alexandra Schwartz

AbstractA reformulation of cardinality-constrained optimization problems into continuous nonlinear optimization problems with an orthogonality-type constraint has gained some popularity during the last few years. Due to the special structure of the constraints, the reformulation violates many standard assumptions and therefore is often solved using specialized algorithms. In contrast to this, we investigate the viability of using a standard safeguarded multiplier penalty method without any problem-tailored modifications to solve the reformulated problem. We prove global convergence towards an (essentially strongly) stationary point under a suitable problem-tailored quasinormality constraint qualification. Numerical experiments illustrating the performance of the method in comparison to regularization-based approaches are provided.


Sign in / Sign up

Export Citation Format

Share Document