scholarly journals Tailored Magnetic Linear Birefringence in Wedge-Shaped Co Nanocluster Assemblies

2021 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Miguel A. Arranz ◽  
Elena H. Sánchez ◽  
Víctor Ruiz-Díez ◽  
José L. Sánchez-Rojas ◽  
José M. Colino

The purpose of this paper is to present an experimental method to induce strong magnetic linear birefringence in two-dimensional assemblies of Co nanoclusters grown on glass plates. Additionally, we have also correlated the magnitude and characteristics of that nonlinear magneto-optical effect with the thickness and profile of those disordered nanostructures. For those aims, we have grown Co nanocluster assemblies on amorphous substrates, by means of pulsed laser ablation in off-axis geometry. This approach enabled us to obtain magnetic media with an intended and pronounced thickness profile, i.e., wedge-shaped assembly, to investigate the orientation and behavior of surface magnetization regarding both the thickness gradient direction and in-plane magnetic field. That study was accomplished by measuring the magneto-optical effects in reflection and transmission configurations, unveiling an out-of-plane magnetization whose magnitude depends closely on the thickness gradient direction. That component, arising from a graded magnetic anisotropy along the wedged nanostructure, adds a reversal mechanism to the surface magnetization, thus being responsible for the magnetic linear birefringence in our ultrathin Co assemblies.

Author(s):  
G.A. Bertero ◽  
R. Sinclair

Pt/Co multilayers displaying perpendicular (out-of-plane) magnetic anisotropy and 100% perpendicular remanent magnetization are strong candidates as magnetic media for the next generation of magneto-optic recording devices. The magnetic coercivity, Hc, and uniaxial anisotropy energy, Ku, are two important materials parameters, among others, in the quest to achieving higher recording densities with acceptable signal to noise ratios (SNR). The relationship between Ku and Hc in these films is not a simple one since features such as grain boundaries, for example, can have a strong influence on Hc but affect Ku only in a secondary manner. In this regard grain boundary separation provides a way to minimize the grain-to-grain magnetic coupling which is known to result in larger coercivities and improved SNR as has been discussed extensively in the literature for conventional longitudinal recording media.We present here results from the deposition of two Pt/Co/Tb multilayers (A and B) which show significant differences in their coercive fields.


2018 ◽  
Vol 8 (10) ◽  
pp. 1880 ◽  
Author(s):  
Hang Li ◽  
Xinhui Zhang ◽  
Xinyu Liu ◽  
Margaret Dobrowolska ◽  
Jacek Furdyna

Magnetization precession induced by linearly polarized optical excitation in ferromagnetic (Ga,Mn)As was studied by time-resolved magneto-optical Kerr effect measurements. The superposition of thermal and non-thermal effects arising from the laser pulses complicates the analysis of magnetization precession in terms of magnetic anisotropy fields. To obtain insight into these processes, we investigated compressively-strained thin (Ga,Mn)As films using ultrafast optical excitation above the band gap as a function of pulse intensity. Data analyses with the gyromagnetic calculation based on Landau-Lifshitz-Gilbert equation combined with two different magneto-optical effects shows the non-equivalent effects of in-plane and out-of-plane magnetic anisotropy fields on both the amplitude and the frequency of magnetization precession, thus providing a handle for separating the effects of non-thermal and thermal processes in this context. Our results show that the effect of photo-generated carriers on magnetic anisotropy constitutes a particularly effective mechanism for controlling both the frequency and amplitude of magnetization precession, thus suggesting the possibility of non-thermal manipulation of spin dynamics through pulsed laser excitations.


2005 ◽  
Vol 290-291 ◽  
pp. 1286-1289 ◽  
Author(s):  
V. Baltz ◽  
S. Landis ◽  
B. Rodmacq ◽  
B. Dieny

2001 ◽  
Vol 672 ◽  
Author(s):  
Rhett T. Brewer ◽  
Paul N. Arendt ◽  
James R. Groves ◽  
Harry A. Atwater

ABSTRACTWe used a previously reported kinematical electron scattering model1 to develop a RHEED based method for performing quantitative analysis of mosaic polycrystalline thin film in-plane and out-of-plain grain orientation distributions. RHEED based biaxial texture measurements are compared to X-Ray and transmission electron microscopy measurements to establish the validity of the RHEED analysis method. In situ RHEED analysis reveals that the out-of-plane orientation distribution starts out very broad, and then decreases during IBAD MgO growth. Other results included evidence that the in-plane orientation distribution narrows, the grain size increases, and the film roughens as film thickness increases during IBAD MgO growth. Homoepitaxy of MgO improves the biaxial texture of the IBAD layer, making X-ray measurements of IBAD films with an additional homoepitaxial layer not quantitatively representative of the IBAD layer. Systematic offsets between RHEED analysis and X-ray measurements of biaxial texture, coupled with evidence that biaxial texture improves with increasing film thickness, indicate that RHEED is a superior technique for probing surface biaxial texture.


2020 ◽  
Vol 6 (43) ◽  
pp. eabc7628
Author(s):  
Zhen Liu ◽  
Kai Guo ◽  
Guangwei Hu ◽  
Zhongtai Shi ◽  
Yue Li ◽  
...  

“Magneto-optical” effect refers to a rotation of polarization plane, which has been widely studied in traditional ferromagnetic metal and insulator films and scarcely in two-dimensional layered materials. Here, we uncover a new nonreciprocal magnetophonon Raman scattering effect in ferromagnetic few-layer CrI3. We observed a rotation of the polarization plane of inelastically scattered light between −20o and +60o that are tunable by an out-of-plane magnetic field from −2.5 to 2.5 T. It is experimentally observed that the degree of polarization can be magnetically manipulated between −20 and 85%. This work raises a new magneto-optical phenomenon and could create opportunities of applying two-dimensional ferromagnetic materials in Raman lasing, topological photonics, and magneto-optical modulator for information transport and storage.


2016 ◽  
Vol 113 (9) ◽  
pp. 2349-2353 ◽  
Author(s):  
Jianting Ji ◽  
Anmin Zhang ◽  
Jiahe Fan ◽  
Yuesheng Li ◽  
Xiaoqun Wang ◽  
...  

We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications.


2018 ◽  
Vol 41 ◽  
Author(s):  
Peter DeScioli

AbstractThe target article by Boyer & Petersen (B&P) contributes a vital message: that people have folk economic theories that shape their thoughts and behavior in the marketplace. This message is all the more important because, in the history of economic thought, Homo economicus was increasingly stripped of mental capacities. Intuitive theories can help restore the mind of Homo economicus.


2019 ◽  
Vol 42 ◽  
Author(s):  
Jeffrey R. Alberts ◽  
Christopher Harshaw ◽  
Gregory E. Demas ◽  
Cara L. Wellman ◽  
Ardythe L. Morrow

Abstract We identify the significance and typical requirements of developmental analyses of the microbiome-gut-brain (MGB) in parents, offspring, and parent-offspring relations, which have particular importance for neurobehavioral outcomes in mammalian species, including humans. We call for a focus on behavioral measures of social-emotional function. Methodological approaches to interpreting relations between the microbiota and behavior are discussed.


Author(s):  
N. David Theodore ◽  
Mamoru Tomozane ◽  
Ming Liaw

There is extensive interest in SiGe for use in heterojunction bipolar transistors. SiGe/Si superlattices are also of interest because of their potential for use in infrared detectors and field-effect transistors. The processing required for these materials is quite compatible with existing silicon technology. However, before SiGe can be used extensively for devices, there is a need to understand and then control the origin and behavior of defects in the materials. The present study was aimed at investigating the structural quality of, and the behavior of defects in, graded SiGe layers grown by chemical vapor deposition (CVD).The structures investigated in this study consisted of Si1-xGex[x=0.16]/Si1-xGex[x= 0.14, 0.13, 0.12, 0.10, 0.09, 0.07, 0.05, 0.04, 0.005, 0]/epi-Si/substrate heterolayers grown by CVD. The Si1-xGex layers were isochronally grown [t = 0.4 minutes per layer], with gas-flow rates being adjusted to control composition. Cross-section TEM specimens were prepared in the 110 geometry. These were then analyzed using two-beam bright-field, dark-field and weak-beam images. A JEOL JEM 200CX transmission electron microscope was used, operating at 200 kV.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Sign in / Sign up

Export Citation Format

Share Document