hin recombinase
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 0)

H-INDEX

11
(FIVE YEARS 0)

2011 ◽  
Vol 150 (3) ◽  
pp. 505-525 ◽  
Author(s):  
DOROTHY BUCK ◽  
MAURO MAURICIO

AbstractWe extend the tangle model, originally developed by Ernst and Sumners [18], to include composite knots. We show that, for any prime tangle, there are no rational tangle attachments of distance greater than one that first yield a 4-plat and then a connected sum of 4-plats. This is done by studying the corresponding Dehn filling problem via double branched covers. In particular, we build on results on exceptional Dehn fillings at maximal distance to show that if Dehn filling on an irreducible manifold gives a lens space and then a connect sum of lens spaces, the distance between the slopes must be one. We then apply our results to the action of the Hin recombinase on mutated sites. In particular, after solving the tangle equations for processive recombination, we use our work to give a complete set of solutions to the tangle equations modelling distributive recombination.


2009 ◽  
Vol 37 (14) ◽  
pp. 4743-4756 ◽  
Author(s):  
Gautam Dhar ◽  
Meghan M. McLean ◽  
John K. Heiss ◽  
Reid C. Johnson
Keyword(s):  

2001 ◽  
Vol 266 (4) ◽  
pp. 598-607 ◽  
Author(s):  
H. Lee ◽  
S. Lee ◽  
H. Lee ◽  
H. Lim

2001 ◽  
Vol 183 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Oliver Z. Nanassy ◽  
Kelly T. Hughes

ABSTRACT A previous genetic screen was designed to separate Hin recombinase mutants into distinct classes based on the stage in the recombination reaction at which they are blocked (O. Nanassy, Zoltan, and K. T. Hughes, Genetics 149:1649–1663, 1998). One class of DNA binding-proficient, recombination-deficient mutants was predicted by genetic classification to be defective in the step prior to invertasome formation. Based on the genetic criteria, mutants from this class were also inferred to be defective in interactions with Fis. In order to understand how the genetic classification relates to individual biochemical steps in the recombination reaction these mutants, R123Q, T124I, and A126T, were purified and characterized for DNA cleavage and recombination activities. Both the T124I and A126T mutants were partially active, whereas the R123Q mutant was inactive. The A126T mutant was not as defective for recombination as the T124I allele and could be partially rescued for recombination both in vivo and in vitro by increasing the concentration of Fis protein. Rescue of the A126T allele required the Fis protein to be DNA binding proficient. A model for a postsynaptic role for Fis in the inversion reaction is presented.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1649-1663
Author(s):  
Oliver Z Nanassy ◽  
Kelly T Hughes

Abstract The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has identified intermediate steps in the inversion reaction but has not yet revealed the process by which transition from one step to another occurs. Because transition from one reaction step to another proceeds through interactions between specific amino acids, and between amino acids and DNA bases, it is possible to study these transitions through mutational analysis of the proteins involved. We isolated a large number of mutants in the Hin recombinase that failed to carry out the DNA exchange reaction. We generated genetic tools that allowed the assignment of these mutants to specific transition steps in the recombination reaction. This genetic analysis, combined with further biochemical analysis, allowed us to define contributions by specific amino acids to individual steps in the DNA inversion reaction. Evidence is also presented in support of a model that Fis protein enhances the binding of Hin to the hixR recombination site. These studies identified regions within the Hin recombinase involved in specific transition steps of the reaction and provided new insights into the molecular details of the reaction mechanism.


Sign in / Sign up

Export Citation Format

Share Document