Aeroelastic Analysis and Optimization using FUNtoFEM of an Efficient Supersonic Air Vehicle

2022 ◽  
Author(s):  
Markus P. Rumpfkeil ◽  
Philip S. Beran
2017 ◽  
Vol 9 (2) ◽  
pp. 93-110
Author(s):  
Jung-Sun Choi ◽  
Gyung-Jin Park

The success of a flapping wing air vehicle flight is strongly related to the flapping motion and wing structure. Various disciplines should be considered for analysis and design of the flapping wing system. A design process for a flapping wing system is defined by using multidisciplinary design optimization. Unsteady aeroelastic analysis is employed as the system analysis. From the results of the aeroelastic analysis, the deformation of the wing is transmitted to the fluid discipline and the dynamic pressure is conveyed to the structural discipline. In the fluid discipline, a kinematic optimization problem is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency simultaneously. In the structural discipline, nonlinear dynamic topology optimization is performed to find the distribution of reinforcement by using the equivalent static loads method for nonlinear static response structural optimization. The defined design process is applied to a flapping wing air vehicle model and the flapping wing air vehicle model is fabricated based on the optimization results.


AIAA Journal ◽  
2011 ◽  
Vol 49 (11) ◽  
pp. 2430-2443 ◽  
Author(s):  
Moble Benedict ◽  
Mattia Mattaboni ◽  
Inderjit Chopra ◽  
Pierangelo Masarati

Author(s):  
Xuan Yang ◽  
Aswathi Sudhir ◽  
Atanu Halder ◽  
Moble Benedict

Aeromechanics of highly flexible flapping wings is a complex nonlinear fluid–structure interaction problem and, therefore, cannot be analyzed using conventional linear aeroelasticity methods. This paper presents a standalone coupled aeroelastic framework for highly flexible flapping wings in hover for micro air vehicle (MAV) applications. The MAV-scale flapping wing structure is modeled using fully nonlinear beam and shell finite elements. A potential-flow-based unsteady aerodynamic model is then coupled with the structural model to generate the coupled aeroelastic framework. Both the structural and aerodynamic models are validated independently before coupling. Instantaneous lift force and wing deflection predictions from the coupled aeroelastic simulations are compared with the force and deflection measurements (using digital image correlation) obtained from in-house flapping wing experiments at both moderate (13 Hz) and high (20 Hz) flapping frequencies. Coupled trim analysis is then performed by simultaneously solving wing response equations and vehicle trim equations until trim controls, wing elastic response, inflow and circulation converge all together. The dependence of control inputs on weight and center of gravity (cg) location of the vehicle is studied for the hovering flight case.


Sign in / Sign up

Export Citation Format

Share Document