Quantification of Gap Effects on Biplane Micro Air Vehicle using Leading-Edge Suction Analogy

2022 ◽  
Author(s):  
Arooj Fatima ◽  
Adnan Maqsood ◽  
Tiauw Hiong Go ◽  
Shuaib Salamat ◽  
Rizwan Riaz
2017 ◽  
Vol 9 (3) ◽  
pp. 187-197 ◽  
Author(s):  
Quoc V Nguyen ◽  
Woei L Chan ◽  
Marco Debiasi

Experimental investigation of wing flexibility on vertical thrust generation and power consumption in hovering condition for a hovering Flapping-Wing Micro Air Vehicle, namely FlowerFly, weighing 14.5 g with a 3 g onboard battery and having four wings with double wing clap-and-fling effects, was conducted for several wing configurations with the same shape, area, and weight. A data acquisition system was set up to simultaneously record aerodynamic forces, electrical power consumption, and wing motions at various flapping frequencies. The forces and power consumption were measured with a loadcell and a custom-made shunt circuit, respectively, and the wing motion was captured by high-speed cameras. The results show a phase delay of the wing tip displacement observed for wings with high flexible leading edge at high frequency, resulting in less vertical thrust produced when compared with the wings with less leading edge flexibility at the same flapping frequency. Positive wing camber was observed during wing flapping motion by arranging the wing supporting ribs. Comparison of thrust-to-power ratios between the wing configurations was undertaken to figure out a wing configuration for high vertical thrust production but less power consumption.


Author(s):  
Asha J. Hall ◽  
Jaret C. Riddick

The present study focuses on development of a flapping wing micro-air vehicle (FWMAV) that employs a piezoelectric actuator to drive the leading edge of the wing. An analysis of insect flight indicates that in addition to the bending excitation (flapping), simultaneous excitation of the twisting degree-of-freedom is required to adequately manipulate the control surface. A functionally-modified piezoelectric bimorph composed of Pb(Zr0.55Ti0.45)O3 (PZT) is being used to produce two degree-of-freedom motion, namely the flapping and twisting facilitated by an off-axis layer of piezoelectric segments affixed to the top surface of a traditional bimorph actuator. The modification of the top surface of a traditional PZT bimorph actuator introduces active bend-twist coupling to the flexural response of the resulting layered PZT. This paper presents analytical and experimental investigation of functionally-modified bimorph designs intended for active bend-twist actuation of cm-scale flapping wing devices.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Pengcheng CHI ◽  
Weiping ZHANG ◽  
Wenyuan CHEN ◽  
Hongyi LI ◽  
Kun MENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document