Determination of the Artificial Space Objects Speed Using the Incoherent Scatter Radars

Author(s):  
Leonid Emelyanov ◽  
Valeriy Pulyayev ◽  
Artem Miroshnikov ◽  
Evgenii Rogozhkin
2000 ◽  
Vol 18 (9) ◽  
pp. 1088-1096 ◽  
Author(s):  
J. M. Holt ◽  
A. P. van Eyken

Abstract. The recent availability of substantial data sets taken by the EISCAT Svalbard Radar allows several important tests to be made on the determination of convection patterns from incoherent scatter radar results. During one 30-h period, the Svalbard Radar made 15 min scans combining local field aligned observations with two, low elevation positions selected to intersect the two beams of the Common Programme Four experiment being simultaneously conducted by the EISCAT VHF radar at Tromsø. The common volume results from the two radars are compared. The plasma convection velocities determined independently by the two radars are shown to agree very closely and the combined three-dimensional velocity data used to test the common assumption of negligible field-aligned flow in this regime.Key words: Ionosphere (auroral ionosphere; polar ionosphere) - Magnetospheric physics (plasma convection)


1996 ◽  
Vol 14 (12) ◽  
pp. 1462-1472 ◽  
Author(s):  
H. Nilsson ◽  
S. Kirkwood ◽  
J. Lilensten ◽  
M. Galand

Abstract. Detailed model calculations of auroral secondary and photoelectron distributions for varying conditions have been used to calculate the theoretical enhancement of incoherent scatter plasma lines. These calculations are compared with EISCAT UHF radar measurements of enhanced plasma lines from both the E and F regions, and published EISCAT VHF radar measurements. The agreement between the calculated and observed plasma line enhancements is good. The enhancement from the superthermal distribution can explain even the very strong enhancements observed in the auroral E region during aurora, as previously shown by Kirkwood et al. The model calculations are used to predict the range of conditions when enhanced plasma lines will be seen with the existing high-latitude incoherent scatter radars, including the new EISCAT Svalbard radar. It is found that the detailed structure, i.e. the gradients in the suprathermal distribution, are most important for the plasma line enhancement. The level of superthermal flux affects the enhancement only in the region of low phase energy where the number of thermal electrons is comparable to the number of suprathermal electrons and in the region of high phase energy where the suprathermal fluxes fall to such low levels that their effect becomes small compared to the collision term. To facilitate the use of the predictions for the different radars, the expected signal- to-noise ratios (SNRs) for typical plasma line enhancements have been calculated. It is found that the high-frequency radars (Søndre Strømfjord, EISCAT UHF) should observe the highest SNR, but only for rather high plasma frequencies. The VHF radars (EISCAT VHF and Svalbard) will detect enhanced plasma lines over a wider range of frequencies, but with lower SNR.


Strong interactions occur between the solar wind and the Earth’s magnetic field which result in the convection of ionospheric plasma over the polar cap regions. This generally forms a two-cell pattern with westward and eastward flows in the pre- and post-midnight sectors respectively. The flow pattern is sensitive to the flux of the solar wind and the direction of the interplanetary magnetic field. Observations of the flow pattern are thus of considerable value in the interpretation of the magnetosphere-ionosphere coupling processes and in identifying the influence of the solar wind on the Earth’s environment. The plasma convection can be observed by ground-based coherent and incoherent scatter radars and the flow vectors determined. Measurements for a range of flow conditions are presented. These are interpreted in terms of the interactions of the solar wind with the magnetosphere and the resulting electric fields which drive the plasma flows in the ionosphere.


2020 ◽  
Author(s):  
Elizabeth Donegan-Lawley ◽  
Alan Wood ◽  
Gareth Dorrian ◽  
Alexandra Fogg ◽  
Timothy Yeoman ◽  
...  

<p>Flow channel events have previously been observed breaking up polar cap patches on the dayside ionosphere but, to the best of our knowledge, have not been observed on the nightside. We report observations of a flow channel event in the evening of the 9th January 2019 under quiet geomagnetic conditions. This multi-instrument study was undertaken using a combination of multiple EISCAT (European Incoherent Scatter) radars, SuperDARN (Super Dual Auroral Radar Network), MSP (Meridian Scanning Photometer) and GNSS (Global Navigation Satellite System) scintillation data. These data were used to build a picture of the evening’s observations from 1800 to 2359 UT. The flow channel event lasted a total of 13 minutes and was responsible for segmenting a polar cap patch. A decrease in electron density was observed, from a patch value of 1.4x10<sup>11</sup> m<sup>3</sup> to a minimum value of 5x10<sup>10</sup> m<sup>3</sup>. In addition, ion velocities in excess of 1000 ms<sup>-1</sup> and ion temperatures of greater than 2000 K were also observed. </p>


2000 ◽  
Vol 18 (9) ◽  
pp. 1242-1247 ◽  
Author(s):  
T. Turunen ◽  
J. Markkanen ◽  
A. P. van Eyken

Abstract. Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997). The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR), which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120–150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.Key words: Radio science (ionospheric physics; signal processing; instruments and techniques)


Sign in / Sign up

Export Citation Format

Share Document