antibody array
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 106)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Guochao Chen ◽  
Wanqiao Zhang ◽  
Lingbo Kong ◽  
Chengxiang Wang ◽  
Xiaojing Lai ◽  
...  

Pseudomonas aeruginosa (PA), a Gram-negative bacterium, has a high detection rate in hospital-acquired infections. Recently, the frequent appearance of multidrug-resistant (MDR) PA strain with high morbidity and mortality rates has aggravated the difficulty in treating infectious diseases. Due to its multiple resistance mechanisms, the commonly used antibiotics have gradually become less effective. Qiguiyin decoction (QGYD) is a clinically experienced prescription of Chinese herbal medicine, and its combined application with antibiotics has been confirmed to be effective in the clinical treatment of MDR PA infection, which could be a promising strategy for the treatment of drug-resistant bacterial infections. However, the mechanism of QGYD restoring antibiotics susceptibility to MDR PA remains unclear. In the present study, we investigated the effects of QGYD and levofloxacin (LEV) singly or in combination on MDR PA-induced pneumonia rat models. Further analysis was carried out in the serum differential expression profiles of inflammatory cytokines by cytokine antibody array. Besides, the lung TLR4/MyD88/NF-κB signaling pathway was detected by RT-qPCR. Our results showed that based on the treatment of MDR PA-infected rat model with LEV, the combination of QGYD improved the general state and immune organ index. Furthermore, it moderately increased the expressions of proinflammatory cytokines including IL-1β, IL-6, and TNF-α in the early stage of infection and decreased their release rapidly in the later stage, while regulated the same phase change of anti-inflammatory cytokine IL-10. In addition, the adhesion molecule ICAM-1 was significantly downregulated after QGYD combined with LEV treatment. Moreover, the mRNA expressions of TLR4, MyD88, NF-κB, and ICAM-1 were significantly downregulated. These results indicated that the mechanism of QGYD restoring LEV susceptibility to MDR PA was related to its regulation of inflammatory cytokines and the TLR4/MyD88/NF-κB signaling pathway, which provides theoretical support for the clinical application of QGYD combined with LEV therapy to MDR PA infection.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Thangarajan Rajkumar ◽  
Sathyanarayanan Amritha ◽  
Veluswami Sridevi ◽  
Gopisetty Gopal ◽  
Kesavan Sabitha ◽  
...  

AbstractBreast cancer is the most common malignancy among women globally. Development of a reliable plasma biomarker panel might serve as a non-invasive and cost-effective means for population-based screening of the disease. Transcriptomic profiling of breast tumour, paired normal and apparently normal tissues, followed by validation of the shortlisted genes using TaqMan® Low density arrays and Quantitative real-time PCR was performed in South Asian women. Fifteen candidate protein markers and 3 candidate epigenetic markers were validated first in primary breast tumours and then in plasma samples of cases [N = 202 invasive, 16 DCIS] and controls [N = 203 healthy, 37 benign] using antibody array and methylation specific PCR. Diagnostic efficiency of single and combined markers was assessed. Combination of 6 protein markers (Adipsin, Leptin, Syndecan-1, Basic fibroblast growth factor, Interleukin 17B and Dickopff-3) resulted in 65% sensitivity and 80% specificity in detecting breast cancer. Multivariate diagnostic analysis of methylation status of SOSTDC1, DACT2, WIF1 showed 100% sensitivity and up to 91% specificity in discriminating BC from benign and controls. Hence, combination of SOSTDC1, DACT2 and WIF1 was effective in differentiating breast cancer [non-invasive and invasive] from benign diseases of the breast and healthy individuals and could help as a complementary diagnostic tool for breast cancer.


2022 ◽  
Author(s):  
Gee Euhn Choi ◽  
Chang Woo Chae ◽  
Mo Ran Park ◽  
Jee Hyeon Yoon ◽  
Young Hyun Jung ◽  
...  

Abstract Exposure to maternal stress irreversibly impairs neurogenesis of offspring through inducing life-long effects on interaction between neurons and glia under raging differentiation process, culminating in cognitive and neuropsychiatric abnormalities in adulthood. We identified how prenatal exposure to the stress-hormone glucocorticoid impairs synapse formation and subsequent neurogenesis using human induced pluripotent stem cell (iPSC)-derived neural stem cell (NSC) and ICR mice. Following prenatal glucocorticoid exposure, NSC-derived astrocytes were found to be A1-like neurotoxic astrocytes. Moreover, cortisol-treated astrocyte conditioned media (ACM) then specifically downregulated AMPA receptor-mediated glutamatergic synaptic formation and transmission in differentiating neurons, by inhibiting localization of ionotropic glutamate receptor (GluR) 1/2 into synapses. We revealed that downregulated astrocytic fibroblast growth factor 2 (FGF2) and nuclear fibroblast growth factor receptor 1 (FGFR1) of neurons are key pathogenic factors for reducing glutamatergic synapse formation, according to data from RNA sequencing and antibody array. We further confirmed that cortisol-treated ACM specifically decreased the binding of neuronal FGFR1 to the synaptogenic NLGN1 promoter, but this was reversed by FGFR1 restoration. Upregulation of neuroligin 1, which is important in scaffolding GluR1/2 into the postsynaptic compartment, eventually normalized glutamatergic synaptogenesis and subsequent neurogenesis. Moreover, FGF2 pretreatment of a prenatal corticosterone-exposed mouse elevated neuroligin 1 expression and trafficking of GluR1/2 into the postsynaptic compartment, improving spatial memory and depression/anxiety-like behaviors. In conclusion, we demonstrated that neuroligin 1 restoration by astrocytic FGF2 and its downstream neuronal nuclear FGFR1 as a critical target of prenatal stress-induced glutamatergic synaptogenesis and demonstrated its function in controlling both neurogenesis and hippocampal-related behaviors.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Seo Woo Shin ◽  
Young Sun Hwang

Oral microbes are intimately associated with many oral and systemic diseases. Ongoing research is seeking to elucidate drugs that prevent and treat microbial diseases. Various functions of Alpinia Katsumadai seed extracts have been reported such as their anti-viral, anti-oxidant, anti-inflammatory, anti-puritic, anti-emetic, and cytoprotective effects. Here, we investigated the anti-periodontitis effect of an ethanol extract of Alpinia Katsumadai seeds (EEAKSs) on dental plaque bacteria (DPB)-induced inflammation and bone resorption. DPB and Porphyromonas gingivalis (P. gingivalis) were cultured and lipopolysaccharide (LPS) was extracted. Prostaglandin E2 (PGE2) and cyclooxygenase 2 (COX-2) levels were estimated using ELISA. Cytotoxicity was also verified. Proteases were screened using a protease antibody array method. Osteoclastic bone resorption was also investigated. EEAKSs suppressed P. gingivalis growth on agar plates. LPS prepared from dental plaque bacteria (DPB-LPS) and P. gingivalis (PG-LPS) significantly increased PGE2 and COX2 levels in immortalized gingival fibroblasts (IGFs), immortalized human oral keratinocytes (IHOKs), and RAW264.7 macrophage cells. However, DPB-LPS and PG-LPS-induced PGE2 and COX-2 increases were effectively abolished by EEAKS treatment at non-cytotoxic concentrations. In the protease antibody array, matrix metalloproteinase (MMP)-2, MMP-3, MMP-7, kallikrein 10, cathepsin D, and cathepsin V levels were increased by PG-LPS stimulation. However, increases in protease levels except for cathepsin D were suppressed by EEAKS treatment. In addition, RANKL-induced osteoclast differentiation was significantly inhibited by EEAKS treatment, leading to reductions in resorption pit formation. These results suggest that EEAKSs exerted a beneficial oral health effect to help prevent DPB-mediated periodontal disease.


2021 ◽  
Author(s):  
Xuehong Zhang ◽  
Furong Wang ◽  
Fanzhi Yan ◽  
Dan Huang ◽  
Haina Wang ◽  
...  

Abstract BackgroundRearrangements involving the fibroblast growth factor receptor 1 (FGFR1) gene result in 8p11 myeloproliferative syndrome (EMS), which is a rare and aggressive hematological malignancy that is often initially diagnosed as myelodysplastic syndrome (MDS). Clinical outcomes are typically poor due to relative resistance to tyrosine kinase inhibitors (TKIs) and rapid transformation to acute leukemia. Deciphering the transcriptomic signature of FGFR1 fusions may open new treatment strategies for FGFR1 rearrangement patients.MethodsDNA sequencing (DNA-seq) was performed for 20 MDS patients and whole exome sequencing (WES) was performed for one HOOK3-FGFR1 fusion positive patient. RNA sequencing (RNA-seq) was performed for 20 MDS patients and 8 healthy donors. Fusion genes were detected using the STAR-Fusion tool. Fluorescence in situ hybridization (FISH), quantitative real-time PCR (qRT-PCR), and Sanger sequencing were used to confirm the HOOK3-FGFR1 fusion gene. The phosphorylation antibody array was performed to validate the activation of nuclear factor-kappaB (NF-kappaB) signaling. ResultsWe identified frequently recurrent mutations of ASXL1 and U2AF1 in the MDS cohort, which is consistent with previous reports. We also identified a novel in-frame HOOK3-FGFR1 fusion gene in one MDS case with abnormal monoclonal B-cell lymphocytosis and ring chromosome 8. FISH analysis detected the FGFR1 break-apart signal in myeloid blasts only. qRT-PCR and Sanger sequencing confirmed the HOOK3-FGFR1 fusion transcript with breakpoints located at the 11th exon of HOOK3 and 10th exon of FGFR1, and Western blot detected the chimeric HOOK3-FGFR1 fusion protein that is presumed to retain the entire tyrosine kinase domain of FGFR1. The transcriptional feature of HOOK3-FGFR1 fusion was characterized by the significant enrichment of the NF-kappaB pathway by comparing the expression profiling of FGFR1 fusion positive MDS with 8 healthy donors and FGFR1 fusion negative MDS patients. Further validation by phosphorylation antibody array also showed NF-kappaB activation, as evidenced by increased phosphorylation of p65 (Ser 536) and of IKBalpha (Ser 32). ConclusionThe HOOK3-FGFR1 fusion gene may contribute to the pathogenesis of MDS and activate the NF-kappaB pathway. These findings highlight a potential novel approach for combination therapy for FGFR1 rearrangement patients.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 267-267
Author(s):  
Djaafar M Rehrah ◽  
Mulumebet Worku ◽  
Hamid Ismail

Abstract Galectins are part of a conserved family of β-galactoside-binding proteins that contribute to critical biological events during mammalian gestation and increasingly recognized for a possible role in the immune response of the cow. The objective of this study was to evaluate the effect of Galectins on signal transduction and cell activation in cow blood. Whole blood was collected aseptically from the jugular vein of healthy Holstein Friesian dairy cows (N=3). Blood samples (2.5ml) in duplicate were treated with 150µl of the four different type of recombinant galectins (1, 3, 4, and 9) respectively and untreated samples were served as control. The concentration of total plasma protein was determined using the Pierce BCA kit. Protein expression profiling was performed using1,358 antibodies on the Full Moon BioSystems’ Signaling Explorer antibody array covering 20 cell signaling pathways, as recommended by the manufacturer using an Agilent microarray scanner. Data normalization was performed using GeneSpring GX software to generate fold changes in gene expression and then filtered to obtain a list of significantly upregulated and downregulated genes. Features were extracted from protein array images of samples treated with Galectin 1, 3, 4, 9, and untreated sample as a control group. Treatment with all four Galectins increased the concentration of total plasma protein. Average increases due to treatment with Gal1, Gal3, Gal4, and Gal9 were 27%, 10%, 20%, and 14% respectively. ANOVA test showed significance difference among the groups (p < 0.05). Dunnett option was used to compare each of the treated samples to the control group as a baseline. The results also showed that there was significant difference between the control group and any of the treated group (p < 0.05). Distinct signaling pathways are activated in response to Galectin exposure. Further studies are needed to define their regulation and functional impact on cow health.


2021 ◽  
Vol 22 (19) ◽  
pp. 10550
Author(s):  
Saad S. Dahham ◽  
Yasser Tabana ◽  
Muhammad Asif ◽  
Marawan Ahmed ◽  
Dinesh Babu ◽  
...  

Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.


2021 ◽  
Vol 10 (3) ◽  
pp. 34-43
Author(s):  
K. V. Dergilev ◽  
Z. I. Tsokolaeva ◽  
Yu. D. Vasilets ◽  
I. B. Beloglazova ◽  
E. V. Parfenova

Background.      The application of tissue-engineered constructs that simulate the natural microenvironment of cells, maintain their viability and functional properties, is a new promising route for the treatment of ischemic diseases. However, the mechanisms that ensure the effectiveness of this type of treatment and the principles of choosing the optimal population of progenitor cells remain poorly understood.        Aim. To study the profile of secretion of proangiogenic growth factors of cardiosphere-derived cell sheet (CS), and to study the effect of their transplantation on postinfarction myocardial vascularization.            Methods. Assembly of cardiosphere-derived cell sheets were performed on thermosensitive culture plates. Characterization of cell sheets was performed using immunofluorescence staining and a commercial kit for the determination of proangiogenic factors “Mouse Angiogenesis Antibody Array”. The evaluation of the angiogenic properties of the cell graft in vivo was carried out using a rat myocardial infarction model.              Results. It was found that the cardiosphere-derived cell sheet secrete factors involved in the regulation of vasculo-/angiogenesis. At the same time, the cultivation of cell sheets under hypoxic conditions (3% O2) led to an increase in the secretion of proangigenic factors VEGF and pIgF, fGf-1, FGF-2, endothelin-1, as well as MMP-9, which is involved in extracellular matrix remodeling. Cell sheet transplantation on the epicardial surface of the heart after myocardial infarction ensures cell viability and local increase in capillarization of the damaged area. Conclusion. Thus, the application of cardiosphere-derived cell sheets, which have proangiogenic properties and ability to maintain post transplantation cell survival, can be considered as a promising approach for the development of new methods of therapy for heart diseases


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingbo Qin ◽  
Mingsheng Lv ◽  
Zeqiang Jiang ◽  
Xianghe Meng ◽  
Yi Wang ◽  
...  

Allergic asthma is a stubborn chronic inflammatory disease, and is considered a co-result of various immune cells, especially mast cells, eosinophils and T lymphocytes. At present, the treatment methods of allergic asthma are limited and the side effects are obvious. Traditional Chinese medicine has been used to treat diseases for thousands of years in China. One such example is the treatment of allergic asthma, which take the characteristics of less adverse reactions and obvious curative effect. Tuo-Min-Ding-Chuan Decoction (TMDCD) is a traditional Chinese medicine compound for the treatment of allergic asthma optimized from Ma-Xing-Gan-Shi Decoction (MXGSD), which was put forward in Treatise on Febrile Diseases by Zhang Zhongjing in the Eastern Han Dynasty. The compound shows a significant clinical effect, but the mechanism of its influence on the immune system is still unclear. The purpose of this study was to observe whether TMDCD could alleviate the symptoms of ovalbumin (OVA) challenged allergic asthma mice, and to explore its immune regulatory mechanism, especially on mast cell (MC) degranulation. The results showed TMDCD could not only reduce the airway hyperresponsiveness (AHR), inflammatory cell infiltration and mucus secretion in the lung tissue of OVA challenged mice, but also decrease the levels of total IgE, OVA-specific IgE, histamine and LTC4 in serum. We found that TMDCD can downregulate the expression of Fractalkine, Tryptase ε, IL-25, CCL19, MCP-1, OX40L, Axl, CCL22, CD30, G-CSF, E-selectin, OPN, CCL5, P-selectin, Gas6, TSLP in OVA challenged mice serum by using mouse cytokines antibody array. It has been reported in some literatures that these differentially expressed proteins are related to the occurrence of allergic asthma, such as tryptase ε, MCP-1, CCL5, etc. can be released by MC. And the results of in vitro experiments showed that TMDCD inhibited the degranulation of RBL-2H3 cells stimulated by DNP-IgE/BSA. Taken together, we made the conclusion that TMDCD could reduce the infiltration of inflammatory cells in lung tissue and alleviate airway remodeling in mice with allergic asthma, showed the effects of anti-inflammatory and antiasthmatic. TMDCD could also reduce the levels of IgE, histamine, LTC4, Tryptase ε, and other MC related proteins in the serum of allergic asthma mice, and the in vitro experiments showed that TMDCD could inhibit IgE mediated degranulation and histamine release of RBL-2H3 cells, proved its anti allergic effect.


2021 ◽  
pp. 1-10
Author(s):  
Wen-Hao Qin ◽  
Jun-Teng Liu ◽  
Shu-Ping Wang ◽  
Zhi-Shi Yang ◽  
Kun-Ke Wang ◽  
...  

BACKGROUND: Distinguishing between benign and malignant bile duct strictures has long been a diagnostic challenge in clinical practice. OBJECTIVE: This study aimed to discover novel biomarkers in bile to improve the diagnostic accuracy of malignant biliary strictures. METHODS: Bile samples were collected from 6 patients with malignant or benign biliary stricture, respectively. Protein profiles of the bile were analyzed with a semi-quantitative human antibody array of 440 proteins. Then the differential expressed proteins were screened by Venn diagram analysis. Following this, the accuracy of these potential biomarkers for discriminating between malignant and non-malignant biliary strictures was validated in a larger (n= 40) group of patients using lasso analysis. Results: Twenty proteins were found differentially expressed in malignant versus benign biliary strictures, 6 of which were identified by Venn diagram analysis to be up-regulated regardless of the location of biliary strictures. Among the 6 biomarkers, bile lipocalin-2, P-cadherin, and adipsin showed better diagnostic utility than that of bile CA19-9. Lasso analysis identified that lipocalin-2, P-cadherin and CA19-9 as a group of makers best distinguished malignant from benign strictures. CONCLUSIONS: Lipocalin-2 and P-cadherin measurements in bile could be clinically useful for the detection of malignant biliary strictures.


Sign in / Sign up

Export Citation Format

Share Document