algebraic signature
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 6)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mohammed Faruque Ahmed

Signature Analyzer is an analyzer which is widely used for mixed-signal system testing. But its hardware has high complexity in implementation as the application technique is a system with rules of an arithmetic finite field with arbitrary radix. It’s a challenging task. To avoid this complexity here the project is made based on Algebraic Signature Analyzer that can be used for mixed signal testing and the analyzer doesn’t contain carry propagation circuitry. It improves performance and fault tolerance. This technique is simple and applicable to systems of any size or radix. The hardware complexity is very low compared to the conventional one and can be used in arithmetic/ algebraic cryptography as well as coding


2021 ◽  
Author(s):  
Muhammad Mohsin Babar

While the design of signature analyzers for digital circuits has been well researched in the past, the common design technique of a signature analyzer for mixed-signal systems is based on the rules of an arithmetic finite field. The analyzer does not contain carry propagating circuitry, which improves its performance as well as fault tolerance. The signatures possess the interesting property that if the input analog signal is imprecise within certain bounds (an inherent property of analog signals), then the generated signature is also imprecise within certain bounds. We offer a method to designing an algebraic signature analyzer that can be used for mixed-signal systems testing. The application of this technique to the systems with an arbitrary radix is a challenging task and the devices designed possess high hardware complexity. The proposed technique is simple and applicable to systems of any size and radix. The hardware complexity is low. The technique can also be used in algebraic coding and cryptography.


2021 ◽  
Author(s):  
Mohammed Faruque Ahmed

Signature Analyzer is an analyzer which is widely used for mixed-signal system testing. But its hardware has high complexity in implementation as the application technique is a system with rules of an arithmetic finite field with arbitrary radix. It’s a challenging task. To avoid this complexity here the project is made based on Algebraic Signature Analyzer that can be used for mixed signal testing and the analyzer doesn’t contain carry propagation circuitry. It improves performance and fault tolerance. This technique is simple and applicable to systems of any size or radix. The hardware complexity is very low compared to the conventional one and can be used in arithmetic/ algebraic cryptography as well as coding


2021 ◽  
Author(s):  
Muhammad Mohsin Babar

While the design of signature analyzers for digital circuits has been well researched in the past, the common design technique of a signature analyzer for mixed-signal systems is based on the rules of an arithmetic finite field. The analyzer does not contain carry propagating circuitry, which improves its performance as well as fault tolerance. The signatures possess the interesting property that if the input analog signal is imprecise within certain bounds (an inherent property of analog signals), then the generated signature is also imprecise within certain bounds. We offer a method to designing an algebraic signature analyzer that can be used for mixed-signal systems testing. The application of this technique to the systems with an arbitrary radix is a challenging task and the devices designed possess high hardware complexity. The proposed technique is simple and applicable to systems of any size and radix. The hardware complexity is low. The technique can also be used in algebraic coding and cryptography.


Measurement ◽  
2019 ◽  
Vol 143 ◽  
pp. 22-26
Author(s):  
Zheng Rujia ◽  
Yu Ziya ◽  
Wang Zhenkai

VLSI Design ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Vadim Geurkov ◽  
Lev Kirischian

We propose an approach to design of an algebraic signature analyzer that can be used for mixed-signal systems testing. The analyzer does not contain carry propagating circuitry, which improves its performance as well as fault tolerance. The common design technique of a signature analyzer for mixed-signal systems is based on the rules of an arithmetic finite field. The application of this technique to the systems with an arbitrary radix is a challenging task and the devices designed possess high hardware complexity. The proposed technique is simple and applicable to systems of any size and radix. The hardware complexity is low. The technique can also be used in arithmetic/algebraic coding and cryptography.


2014 ◽  
Vol 22 (3) ◽  
pp. 225-255
Author(s):  
Grzegorz Bancerek

Summary We introduce algorithmic logic - an algebraic approach according to [25]. It is done in three stages: propositional calculus, quantifier calculus with equality, and finally proper algorithmic logic. For each stage appropriate signature and theory are defined. Propositional calculus and quantifier calculus with equality are explored according to [24]. A language is introduced with language signature including free variables, substitution, and equality. Algorithmic logic requires a bialgebra structure which is an extension of language signature and program algebra. While-if algebra of generator set and algebraic signature is bialgebra with appropriate properties and is used as basic type of algebraic logic.


2008 ◽  
Vol 18 (04) ◽  
pp. 589-681 ◽  
Author(s):  
W. J. BLOK ◽  
J. G. RAFTERY

A translation in an algebraic signature is a finite conjunction of equations in one variable. On a quasivariety K, a translation τ naturally induces a deductive system, called the τ-assertional logic of K. Two quasivarieties are τ-assertionally equivalent if they have the same τ-assertional logic. This paper is a study of assertional equivalence. It characterizes the quasivarieties equivalent to ones with various desirable properties, such as τ-regularity (a general form of point regularity). Special attention is paid to structural properties of quasivarieties that are assertionally equivalent to their varietal closures under an indicated translation.


Sign in / Sign up

Export Citation Format

Share Document