ambystoma texanum
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

Parasitology ◽  
2020 ◽  
Vol 147 (3) ◽  
pp. 360-370
Author(s):  
Laura Adamovicz ◽  
Daniel B. Woodburn ◽  
Stephany Virrueta Herrera ◽  
Kelsey Low ◽  
Christopher A. Phillips ◽  
...  

AbstractIchthyosporean parasites (order Dermocystida) can cause morbidity and mortality in amphibians, but their ecology and epidemiology remain understudied. We investigated the prevalence, gross and histologic appearance, and molecular phylogeny of a novel dermocystid in the state-endangered silvery salamander (Ambystoma platineum) and the co-occurring, non-threatened small-mouthed salamander (Ambystoma texanum) from Illinois. Silvery salamanders (N = 610) were sampled at six ephemeral wetlands from 2016 to 2018. Beginning in 2017, 1–3 mm raised, white skin nodules were identified in 24 silvery salamanders and two small-mouthed salamanders from five wetlands (prevalence = 0–11.1%). Skin biopsy histology (N = 4) was consistent with dermocystid sporangia, and necropsies (N = 3) identified infrequent hepatic sporangia. Parasitic 18S rRNA sequences (N = 5) from both salamander species were identical, and phylogenetic analysis revealed a close relationship to Dermotheca viridescens. Dermocystids were not identified in museum specimens from the same wetlands (N = 125) dating back to 1973. This is the first report of Dermotheca sp. affecting caudates in the Midwestern United States. Future research is needed to determine the effects of this pathogen on individual and population health, and to assess whether this organism poses a threat to the conservation of ambystomatid salamanders.


2003 ◽  
Vol 81 (4) ◽  
pp. 710-715 ◽  
Author(s):  
T S Garcia ◽  
R Straus ◽  
A Sih

Temperature has been shown to affect body color in several species of amphibians. The interaction between color and temperature may also change over larval ontogeny, perhaps because of age-related or seasonal changes in selection pressures on color. We quantified the effects of temperature on the color of the salamander sister species Ambystoma barbouri and Ambystoma texanum over larval ontogeny. We found that early-stage larvae responded to cold temperatures with a dark color relative to that of the warm temperature response. Both species then exhibited an ontogenetic shift in larval color, with larvae becoming lighter with age. Interestingly, older larvae showed decreased plasticity in color change to temperature when compared with younger stages. Older A. barbouri larvae showed no color response to the two temperature treatments, whereas older A. texanum larvae exhibited a reversal in the direction of color change, with cold temperatures inducing a lighter color relative to warm temperatures. We suggest that the overall pattern of color change (a plastic color response to temperature for young larvae, a progressive lightening of larvae over development, and an apparent loss of color plasticity to temperature over ontogeny) can be plausibly explained by seasonal changes in environmental factors (temperature, ultraviolet radiation) selecting for body color.


Sign in / Sign up

Export Citation Format

Share Document