wasatch front
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Morgan P. Moschetti ◽  
David Churchwell ◽  
Eric M. Thompson ◽  
John M. Rekoske ◽  
Emily Wolin ◽  
...  

Abstract Ground-motion analysis of more than 3000 records from 59 earthquakes, including records from the March 2020 Mw 5.7 Magna earthquake sequence, was carried out to investigate site response and basin amplification in the Wasatch Front, Utah. We compare ground motions with the Bayless and Abrahamson (2019; hereafter, BA18) ground-motion model (GMM) for Fourier amplitude spectra, which was developed on crustal earthquake records from California and other tectonically active regions. The Wasatch Front records show a significantly different near-source rate of distance attenuation than the BA18 model, which we attribute to differences in (apparent) geometric attenuation. Near-source residuals show a period dependence of this effect, with greater attenuation at shorter periods (T<0.5  s) and a correlation between period and the distance over which the discrepancy manifests (∼20–50  km). We adjusted the recorded ground motions for these regional path effects and solved for station site terms using linear mixed-effects regressions, with groupings for events and stations. We analyzed basin amplification by comparing the site terms with the basin geometry and basin depths from two seismic-velocity models for the region. Sites over the deeper parts of the sedimentary basins are amplified by factors of 3–10, relative to sites with thin sedimentary cover, with greater amplification at longer periods (T≳1  s). Average ground-motion variability increases with period, and long-period variability exhibits a slight increase at the basin edges. These results indicate regional seismic wave propagation effects requiring further study, and potentially a regionalized GMM, as well as highlight basin amplification complexities that may be incorporated into seismic hazard assessments.


2020 ◽  
Vol 55 (1) ◽  
pp. 55-73
Author(s):  
Eric R. Meyer ◽  
Ron A. Harris

ABSTRACT Structural and geomorphic studies, and lithostratigraphic and biostratigraphic mapping reveal that a giant toreva block (6.125 km3) slid off Mount Timpanogos toward what are now densely populated urban areas along the Wasatch Front of Utah. The block forms a prominent peak known as Big Baldy, which consists of steeply dipping and locally brecciated limestone and quartzarenite over nearly horizontal shale. Preferential erosion of this shale below overlying limestone and quartzarenite cliffs is most likely the cause of this particular landslide and potential future slides along the Wasatch Front. The low-angle contact at the base of the giant toreva block was initially mapped as a thrust, then as a low-angle normal fault. In both cases, these faults were inferred to have large amounts of displacement (900 meters), but no traces of such faults are found in adjacent canyons. The Baldy slide is associated with geomorphologic features, such as faceted spurs, landslide scarps, sackungen, and hummocky terrain. Limestone and quartzarenite beds in the block are back-rotated up to 80° and are locally broken and brecciated. No evidence of hydro-fracturing is found in the breccia or of multiple brecciation episodes, which indicates surficial rather than deep-crustal processes and perhaps a single event of slip. We speculate based on structural reconstructions of the slide block, and interpolation of maximum downcutting rates on nearby streams, that the slide initiated between 700 and 500 ka. Discovery of the Baldy slide attests to the importance of recognizing the influence of surficial processes in mountain front development and demonstrate the ongoing geologic hazard of mass wasting to communities along the seismically active Wasatch Front and similar horst blocks.


2019 ◽  
Vol 530 ◽  
pp. 119317 ◽  
Author(s):  
Michael M. Goodman ◽  
Gregory T. Carling ◽  
Diego P. Fernandez ◽  
Kevin A. Rey ◽  
Colin A. Hale ◽  
...  

2019 ◽  
Author(s):  
Tiffany A. Rivera ◽  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document