extended melnikov method
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Yan Zheng ◽  
Wei Zhang ◽  
Tao Liu

Abstract The researches of global bifurcations and chaotic dynamics for high-dimensional nonlinear systems are extremely challenging. In this paper, we study the multi-pulse orbits and chaotic dynamics of an eccentric rotating composite laminated circular cylindrical shell. The four-dimensional averaged equations are obtained by directly using the multiple scales method under the case of the 1:2 internal resonance and principal parametric resonance-1/2 subharmonic resonance. The system is transformed to the averaged equations. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on the normal form obtained, the extended Melnikov method is utilized to analyze the multi-pulse global homoclinic bifurcations and chaotic dynamics for the eccentric rotating composite laminated circular cylindrical shell. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the eccentric rotating composite laminated circular cylindrical shell are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the eccentric rotating composite laminated circular cylindrical shell.


2014 ◽  
Vol 24 (11) ◽  
pp. 1450138 ◽  
Author(s):  
W. L. Hao ◽  
W. Zhang ◽  
M. H. Yao

This paper studies the global bifurcations and multipulse chaotic dynamics of a four-edge simply supported honeycomb sandwich rectangular plate under combined in-plane and transverse excitations. Based on the von Karman type equation for the geometric nonlinearity and Reddy's third-order shear deformation theory, the governing equations of motion are derived for the four-edge simply supported honeycomb sandwich rectangular plate. The Galerkin method is employed to discretize the partial differential equations of motion to a three-degree-of-freedom nonlinear system. The six-dimensional nonautonomous nonlinear system is simplified to a three-order standard form by using the normal form method. The extended Melnikov method is improved to investigate the six-dimensional nonautonomous nonlinear dynamical system in a mixed coordinate. The global bifurcations and multipulse chaotic dynamics of the four-edge simply supported honeycomb sandwich rectangular plate are studied by using the improved extended Melnikov method. The multipulse chaotic motions of the system are found by using numerical simulation, which further verifies the result of theoretical analysis.


Author(s):  
Wei Zhang ◽  
Qi-liang Wu

In this paper, an extended high-dimensional Melnikov method is used to investigate global and chaotic dynamics of a simply supported 3D-kagome truss core sandwich plate subjected to the transverse and the in-plane excitations. Based on the motion equation derived by Zhang and the method of multiple scales, the averaged equation is obtained for the case of principal parametric resonance and 1:2 sub-harmonic resonance for the first-order mode and primary resonance for the second-order mode. From the averaged equation obtained, the system is simplified to a three order standard form with a double zero and a pair of pure imaginary eigenvalues by using the theory of normal form. Then, the extended Melnikov method is utilized to investigate the Shilnikov-type multi-pulse heteroclinic bifurcations and existence of chaos. The analysis of the extended Melnikov method demonstrates that there exist the Shilnikov-type multi-pulse heteroclinic bifurcations and chaos in the four-dimensional non-autonomous nonlinear system. Finally, the results of numerical simulations also show that for the nonlinear system of simply supported 3D-kagome truss core sandwich plate with the transverse and the in-plane excitations, the Shilnikov-type multi-pulse motion of chaos can happen and further verify the result of theoretical analysis.


2014 ◽  
Vol 24 (05) ◽  
pp. 1450068 ◽  
Author(s):  
Junhua Zhang ◽  
Wei Zhang ◽  
Yuxin Hao

The extended Melnikov method is improved to investigate the nonautonomous nonlinear dynamical system in Cartesian coordinate. The multipulse chaotic dynamics of a simply supported functionally graded materials (FGM) rectangular plate subjected to transversal and in-plane excitations is investigated in this paper for the first time. The formulas of the FGM rectangular plate are two-degree-of-freedom nonautonomous nonlinear system with coupling of nonlinear terms including several square and cubic terms. The extended Melnikov method is improved to enable us to analyze directly the nonautonomous nonlinear dynamical system of the simply-supported FGM rectangular plate. The results obtained here indicate that multipulse chaotic motions can occur in the simply-supported FGM rectangular plate. Numerical simulation is also employed to find the multipulse chaotic motions of the simply-supported FGM rectangular plate.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Minghui Yao ◽  
Wei Zhang ◽  
D. M. Wang

This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is used to study the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric rectangular plate.


2013 ◽  
Vol 23 (01) ◽  
pp. 1350001 ◽  
Author(s):  
MINGHUI YAO ◽  
WEI ZHANG ◽  
JEAN W. ZU

This paper investigates the multi-pulse global heteroclinic bifurcations and chaotic dynamics for nonlinear, nonplanar oscillations of the parametrically excited viscoelastic moving belts by using an extended Melnikov method in the resonant case. Applying the method of multiple scales, the Galerkin's approach and the theory of normal form, the explicit normal form is obtained for the case of 1:1 internal resonance and primary parametric resonance. Studies are performed for the heteroclinic bifurcations of the unperturbed system and for the characteristics of the hyperbolic dynamics of the dissipative system, respectively. The extended Melnikov method is used to investigate the Shilnikov type multi-pulse bifurcations and chaotic dynamics of the viscoelastic moving belt. Based on the investigation, the geometric structure of the multi-pulse orbits is described in the four-dimensional phase space. Numerical simulations show that the Shilnikov type multi-pulse chaotic motions can occur. Furthermore, numerical simulations lead to the discovery of the new shapes of chaotic motion. Overall, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists.


Author(s):  
Wei Zhang ◽  
Yutong Huang

The nonlinear dynamic behavior of a laminated composite cantilever plate is investigated in this paper. The extended Melnikov method is employed to predict the multi-pulse chaotic motions of the cantilever plate. The model is based on the wing flutter of the airplane. The cantilever plate is considered to be subjected to the in-plane and transversal excitations. The Reddy’s high-order shear deformation theory as well as von Ka´rma´n type equations are used to establish the equation of motion for the cantilever plate. Applying the Galerkin procedure to the partial differential governing equations of motion for the system, we obtain equations of transverse displacement. Then the method of multiple scales is used to obtain the averaged equations. Finally, the extended Melnikov method is used to analyze the nonlinear behavior in the cantilever plate system. The theoretical result shows that there exists multi-pulse jumping movement. The numerical results also reveal such chaotic phenomenon.


Sign in / Sign up

Export Citation Format

Share Document